Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 11: 744, 2020.
Article in English | MEDLINE | ID: mdl-32395120

ABSTRACT

Antigen capturing at the periphery is one of the earliest, crucial functions of antigen-presenting cells (APCs) to initiate immune responses. Langerhans cells (LCs), the epidermal APCs migrate to draining lymph nodes (DLNs) upon acquiring antigens. An arsenal of endocytic molecules is available to this end, including lectins and pathogen recognition receptors (PRRs). However, cutaneous LCs are poorly defined in the early neonatal period. We assessed endocytic molecules expression in situ: Mannose (CD206)-, Scavenger (SRA/CD204)-, Complement (CD2l, CDllb)-, and Fc-Receptors (CD16/32, CD23) as well as CD1d, CD14, CD205, Langerin (CD207), MHCII, and TLR4 in unperturbed epidermal LCs from both adult and early neonatal mice. As most of these markers were negative at birth (day 0), LC presence was revealed with the conspicuous, epidermal LC-restricted ADPase (and confirmed with CD45) staining detecting that they were as numerous as adult ones. Unexpectedly, most LCs at day 0 expressed CD14 and CD204 while very few were MHCII+ and TLR4+. In contrast, adult LCs lacked all these markers except Langerin, CD205, CD11b, MHCII and TLR4. Intriguingly, the CD204+ and CD14+ LCs predominant at day 0, apparently disappeared by day 4. Upon cutaneous FITC application, LCs were reduced in the skin and a CD204+MHCII+FITC+ population with high levels of CD86 subsequently appeared in DLNs, with a concomitant increased percentage of CD3+CD69+ T cells, strongly suggesting that neonatal LCs were able both to ferry the cutaneous antigen into DLNs and to activate neonatal T cells in vivo. Cell cycle analysis indicated that neonatal T cells in DLNs responded with proliferation. Our study reveals that epidermal LCs are present at birth, but their repertoire of endocytic molecules and PRRs differs to that of adult ones. We believe this to be the first description of CDl4, CD204 and TLR4 in neonatal epidermal LCs in situ. Newborns' LCs express molecules to detect antigens during early postnatal periods, are able to take up local antigens and to ferry them into DLNs conveying the information to responsive neonatal T cells.


Subject(s)
Langerhans Cells/immunology , Langerhans Cells/physiology , Receptors, Cell Surface/metabolism , T-Lymphocytes/metabolism , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Epidermal Cells/metabolism , Female , Lymph Nodes , Mice , Mice, Inbred BALB C , Pregnancy , Skin/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7
2.
Int J Exp Pathol ; 86(5): 323-34, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16191104

ABSTRACT

Although dengue virus (DV) enters through skin while mosquitoes feed, early contacts remain unexplored regarding the cutaneous viral fate and in situ immune responses. We addressed this by exposing healthy, non-cadaveric, freshly obtained human skin explants to a human DV2 isolate. We demonstrated negative-strand DV-RNA and non-structural protein-1, both suggestive of viral replication in skin. Although control, mock-infected and DV-infected explants showed less (MHC-CII(+)/CD1a(+)/Langerin+) Langerhans cells, deranged morphology and decreased frequency were more apparent in DV-infected explants. Whereas DV+ cells were infrequent in epidermis and completely absent in dermis, some areas of basal epidermis were clearly DV+, presumably keratinocytes, cells where TUNEL positivity revealed apoptosis. Unlike fresh, control and mock-infected skin, DV-infected explants expressed CD80 and CD83, indicative of dendritic cell (DC) activation and maturation, respectively. However, sequential sections indicated that these cells were not DV+, suggesting that activated/mature DCs capable of priming T cells, probably, were not infected. Alternatively, the occasionally infected epidermal DC might not have reached maturation. Interestingly, skin DV infection apparently uncouples the DC activation/maturation process from another crucial DC function, the subsequent migration into dermis. This was suggested, because upon cutaneous DV infection, the few emerging CD83+ (mature) DCs remained within the outer epidermis, while no dermal CD83+ DCs were observed. These paradoxical effects might represent unknown DV subversion strategies. This approach is relatively easy, quick (results in 48 h), economical for developing countries where dengue is re-emerging and advantageous to evaluate in situ viral biology, immunity and immunopathology and potential antiviral strategies.


Subject(s)
Dendritic Cells/immunology , Dengue Virus/pathogenicity , Dengue/immunology , Epidermis/immunology , Apoptosis , Dendritic Cells/virology , Epidermis/pathology , Epidermis/virology , Female , Humans , In Situ Hybridization , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Tissue Culture Techniques , Vaccination/methods , Viral Nonstructural Proteins/analysis , Virology/methods , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...