Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
2.
Hepatol Commun ; 6(9): 2523-2537, 2022 09.
Article in English | MEDLINE | ID: mdl-35593203

ABSTRACT

Splanchnic vasodilatation contributes to the development and aggravation of portal hypertension (PHT). We previously demonstrated that in cirrhosis, angiotensin- mediates splanchnic vasodilatation through the Mas receptor (MasR). In this study, we investigated whether the recently characterized second receptor for angiotensin-(1-7), Mas-related G protein-coupled receptor type D (MrgD), contributes to splanchnic vasodilatation in cirrhotic and noncirrhotic PHT. Splanchnic vascular hemodynamic and portal pressure were determined in two rat models of cirrhotic PHT and a rat model with noncirrhotic PHT, treated with either MrgD blocker D-Pro7 -Ang-(1-7) (D-Pro) or MasR blocker A779. Gene and protein expression of MrgD and MasR were measured in splanchnic vessels and livers of cirrhotic and healthy rats and in patients with cirrhosis and healthy subjects. Mesenteric resistance vessels isolated from cirrhotic rats were used in myographs to study their vasodilatory properties. MrgD was up-regulated in cirrhotic splanchnic vessels but not in the liver. In cirrhotic rats, treatment with D-Pro but not A779 completely restored splanchnic vascular resistance to a healthy level, resulting in a 33% reduction in portal pressure. Mesenteric vessels pretreated with D-Pro but not with A779 failed to relax in response to acetylcholine. There was no splanchnic vascular MrgD or MasR up-regulation in noncirrhotic PHT; thus, receptor blockers had no effect on splanchnic hemodynamics. Conclusion: MrgD plays a major role in the development of cirrhotic PHT and is a promising target for the development of novel therapies to treat PHT in cirrhosis. Moreover, neither MrgD nor MasR contributes to noncirrhotic PHT.


Subject(s)
Hypertension, Portal , Receptors, G-Protein-Coupled , Animals , Disease Models, Animal , Hypertension, Portal/drug therapy , Liver Cirrhosis/complications , Nerve Tissue Proteins , Portal Pressure , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/antagonists & inhibitors
4.
Hepatol Commun ; 6(5): 1056-1072, 2022 05.
Article in English | MEDLINE | ID: mdl-34951153

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is frequently associated with type 2 diabetes. However, there is no specific medical therapy to treat this condition. Angiotensin-converting enzyme 2 (ACE2) of the protective renin angiotensin system generates the antifibrotic peptide angiotensin-(1-7) from profibrotic angiotensin II peptide. In this study, we investigated the therapeutic potential of ACE2 in diabetic NAFLD mice fed a high-fat (20%), high-cholesterol (2%) diet for 40 weeks. Mice were given a single intraperitoneal injection of ACE2 using an adeno-associated viral vector at 30 weeks of high-fat, high-cholesterol diet (15 weeks after induction of diabetes) and sacrificed 10 weeks later. ACE2 significantly reduced liver injury and fibrosis in diabetic NAFLD mice compared with the control vector injected mice. This was accompanied by reductions in proinflammatory cytokine expressions, hepatic stellate cell activation, and collagen 1 expression. Moreover, ACE2 therapy significantly increased islet numbers, leading to an increased insulin protein content in ß-cells and plasma insulin levels with subsequent reduction in plasma glucose levels compared with controls. Conclusion: We conclude that ACE2 gene therapy reduces liver fibrosis and hyperglycemia in diabetic NAFLD mice and has potential as a therapy for patients with NAFLD with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Angiotensin-Converting Enzyme 2 , Animals , Diabetes Mellitus, Type 2/complications , Glycemic Control , Humans , Insulin/metabolism , Liver Cirrhosis/drug therapy , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Peptidyl-Dipeptidase A/genetics
5.
Molecules ; 26(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443423

ABSTRACT

Chronic liver inflammation has become a major global health concern. In the absence of clinical surrogate markers to diagnose inflammatory liver disease, the intervention with effective drugs in modern medicine tends to be late. In Sri Lanka, traditional medical practitioners prescribe herbal preparations from Osbeckia octandra for the prevention and treatment of liver disorders. To test the efficacy of such treatments, we have administered thioacetamide (TAA) to male Wistar rats to induce chronic liver damage (disease control; DC) and examined how various leaf extracts: crude leaf suspension (CLS), boiled leaf extract (BLE), sonicated leaf extract (SLE), methanol leaf extract (MLE) and hexane leaf extract (HLE) of O. octandra ameliorate TAA-induced liver disease. The CLS, BLE and SLE treatments in cirrhotic rats significantly attenuated disease-related changes, such as liver weight and hepato-enzymes. The mRNA levels of Tnf-α were significantly decreased by 3.6, 10 and 3.9 times in CLS, BLE and SLE compared to DC. The same treatments resulted in significantly lower (19.5, 4.2 and 2.4 times) α-Sma levels compared to DC. In addition, Tgf-ß1 and Vegf-R2 mRNA expressions were significantly lower with the treatments. Moreover, BLE expressed a strong anti-angiogenic effect. We conclude that CLS, BLE and SLE from O. octandra have potent hepatic anti-fibrotic effects in TAA-induced liver cirrhosis.


Subject(s)
Liver Cirrhosis, Experimental/drug therapy , Melastomataceae/chemistry , Neovascularization, Pathologic/drug therapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Cytokines/genetics , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation Mediators/metabolism , Liver/enzymology , Liver/pathology , Liver Cirrhosis, Experimental/blood , Neovascularization, Pathologic/blood , Organ Size/drug effects , Plant Extracts/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thioacetamide , Up-Regulation/drug effects , Water , Weight Loss/drug effects
6.
J Clin Med ; 10(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670126

ABSTRACT

There is considerable experimental evidence that the renin angiotensin system (RAS) plays a central role in both hepatic fibrogenesis and portal hypertension. Angiotensin converting enzyme (ACE), a key enzyme of the classical RAS, converts angiotensin I (Ang I) to angiotensin II (Ang II), which acts via the Ang II type 1 receptor (AT1R) to stimulate hepatic fibrosis and increase intrahepatic vascular tone and portal pressure. Inhibitors of the classical RAS, drugs which are widely used in clinical practice in patients with hypertension, have been shown to inhibit liver fibrosis in animal models but their efficacy in human liver disease is yet to be tested in adequately powered clinical trials. Small trials in cirrhotic patients have demonstrated that these drugs may lower portal pressure but produce off-target complications such as systemic hypotension and renal failure. More recently, the alternate RAS, comprising its key enzyme, ACE2, the effector peptide angiotensin-(1-7) (Ang-(1-7)) which mediates its effects via the putative receptor Mas (MasR), has also been implicated in the pathogenesis of liver fibrosis and portal hypertension. This system is activated in both preclinical animal models and human chronic liver disease and it is now well established that the alternate RAS counter-regulates many of the deleterious effects of the ACE-dependent classical RAS. Work from our laboratory has demonstrated that liver-specific ACE2 overexpression reduces hepatic fibrosis and liver perfusion pressure without producing off-target effects. In addition, recent studies suggest that the blockers of the receptors of alternate RAS, such as the MasR and Mas related G protein-coupled receptor type-D (MrgD), increase splanchnic vascular resistance in cirrhotic animals, and thus drugs targeting the alternate RAS may be useful in the treatment of portal hypertension. This review outlines the role of the RAS in liver fibrosis and portal hypertension with a special emphasis on the possible new therapeutic approaches targeting the ACE2-driven alternate RAS.

7.
Clin Sci (Lond) ; 134(23): 3137-3158, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33284956

ABSTRACT

Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Liver Diseases/enzymology , Liver/enzymology , Renin-Angiotensin System/physiology , SARS-CoV-2/pathogenicity , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Biomarkers/metabolism , COVID-19/enzymology , COVID-19/etiology , COVID-19/therapy , Genetic Therapy , Humans , Liver/physiopathology , Liver/virology , Liver Diseases/therapy , Liver Diseases/virology , Mice
8.
World J Gastroenterol ; 26(40): 6111-6140, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33177789

ABSTRACT

Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 blockers, which target the components of the classical renin angiotensin system (RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant off-target effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective -blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs. Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.


Subject(s)
Esophageal and Gastric Varices , Hypertension, Portal , Gastrointestinal Hemorrhage , Humans , Hypertension, Portal/drug therapy , Hypertension, Portal/etiology , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Portal Pressure
9.
Hepatol Commun ; 3(12): 1656-1673, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832573

ABSTRACT

There is a large unmet need for effective therapies for cholestatic disorders, including primary sclerosing cholangitis (PSC), a disease that commonly results in liver failure. Angiotensin (Ang) II of the renin Ang system (RAS) is a potent profibrotic peptide, and Ang converting enzyme 2 (ACE2) of the alternate RAS breaks down Ang II to antifibrotic peptide Ang-(1-7). In the present study, we investigated long-term effects of ACE2 delivered by an adeno-associated viral vector and short-term effects of Ang-(1-7) peptide in multiple drug-resistant gene 2-knockout (Mdr2-KO) mice. These mice develop progressive biliary fibrosis with pathologic features closely resembling those observed in PSC. A single intraperitoneal injection of ACE2 therapy markedly reduced liver injury (P < 0.05) and biliary fibrosis (P < 0.01) at both established (3-6 months of age) and advanced (7-9 months of age) disease compared to control vector-injected Mdr2-KO mice. This was accompanied by increased hepatic Ang-(1-7) levels (P < 0.05) with concomitant reduction in hepatic Ang II levels (P < 0.05) compared to controls. Moreover, Ang-(1-7) peptide infusion improved liver injury (P < 0.05) and biliary fibrosis (P < 0.0001) compared to saline-infused disease controls. The therapeutic effects of both ACE2 therapy and Ang-(1-7) infusion were associated with significant (P < 0.01) reduction in hepatic stellate cell (HSC) activation and collagen expression. While ACE2 therapy prevented the loss of epithelial characteristics of hepatocytes and/or cholangiocytes in vivo, Ang-(1-7) prevented transdifferentiation of human cholangiocytes (H69 cells) into the collagen-secreting myofibroblastic phenotype in vitro. We showed that an increased ratio of hepatic Ang-(1-7) to Ang II levels by ACE2 therapy results in the inhibition of HSC activation and biliary fibrosis. Conclusion: ACE2 therapy has the potential to treat patients with biliary diseases, such as PSC.

10.
Front Physiol ; 10: 1169, 2019.
Article in English | MEDLINE | ID: mdl-31607942

ABSTRACT

Portal hypertension (PHT) resulting from splanchnic vasodilatation is a major cause of morbidity and mortality in patients with cirrhosis. The renin-angiotensin system (RAS) plays an important role in splanchnic vasodilatation in cirrhosis. This study investigated whether acute blockade of the vasodilatory receptors of the alternate RAS, Mas (MasR), Mas-related G-protein coupled receptor type D (MrgD), and angiotensin II type-2 receptor (AT2R) improves PHT in cirrhotic and non-cirrhotic portal hypertensive rats and counteracts systemic hypotension associated with angiotensin II type 1 receptor (AT1R) blockade. Cirrhotic bile duct ligated (BDL) or carbon tetrachloride (CCl4) injected and non-cirrhotic partial portal vein ligated (PPVL) rats were used for measurement of portal pressure (PP) and mean arterial pressure before and after an intravenous bolus injection of the MasR, MrgD, and AT2R blockers, A779, D-Pro7-Ang-(1-7) (D-Pro) and PD123319, respectively. Separate groups of rats received a combined treatment with A779 or D-Pro given 20 min after AT1R blocker losartan. Mesenteric expression of MasR, MrgD, and AT2R and circulating levels of peptide blockers were also measured. Treatment with A779 and D-Pro significantly reduced PP in cirrhotic rat models. Despite rapid degradation of A779 and D-Pro in the rat circulation, the PP lowering effect of the blockers lasted for up to 25 min. We also found that PD123319 reduced PP in CCl4 rats, possibly by blocking the MasR and/or MrgD since AT2R expression in cirrhotic mesenteric vessels was undetectable, whereas the expression of MasR and MrgD was markedly elevated. While losartan resulted in a marked reduction in PP, its profound systemic hypotensive effect was not counteracted by the combination therapy with A779 or D-Pro. In marked contrast, none of the receptor blockers had any effect on PP in non-cirrhotic PPVL rats whose mesenteric expression of MasR and MrgD was unchanged. We conclude that in addition to MasR, MrgD, a newly discovered receptor for Angiotensin-(1-7), plays a key role in splanchnic vasodilatation in cirrhosis. This implies that both MasR and MrgD are potential therapeutic targets to treat PHT in cirrhotic patients. We also conclude that the alternate RAS may not contribute to the development of splanchnic vasodilatation in non-cirrhotic PHT.

11.
Int J Mol Sci ; 20(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614491

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the adult population and is now a major cause of liver disease-related premature illness and deaths in the world. Treatment is largely based on lifestyle modification, which is difficult to achieve in most patients. Progression of simple fatty liver or steatosis to its severe form non-alcoholic steatohepatitis (NASH) and liver fibrosis has been explained by a 'two-hit hypothesis'. Whilst simple steatosis is considered the first hit, its transformation to NASH may be driven by a second hit. Of several factors that constitute the second hit, advanced glycation end products (AGEs), which are formed when reducing-sugars react with proteins or lipids, have been implicated as major candidates that drive steatosis to NASH via the receptor for AGEs (RAGE). Both endogenous and processed food-derived (exogenous) AGEs can activate RAGE, mainly present on Kupffer cells and hepatic stellate cells, thus propagating NAFLD progression. This review focuses on the pathophysiology of NAFLD with special emphasis on the role of food-derived AGEs in NAFLD progression to NASH and liver fibrosis. Moreover, the effect of dietary manipulation to reduce AGE content in food or the therapies targeting AGE/RAGE pathway on disease progression is also discussed.


Subject(s)
Glycation End Products, Advanced/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptor for Advanced Glycation End Products/metabolism , Disease Progression , Food/adverse effects , Hepatic Stellate Cells/metabolism , Humans , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced
12.
J Clin Med ; 8(4)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934723

ABSTRACT

INTRODUCTION: Recent animal studies have shown that the alternate renin-angiotensin system (RAS) consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1⁻7) (Ang-(1⁻7)) and the Mas receptor is upregulated in cirrhosis and contributes to splanchnic vasodilatation and portal hypertension. To determine the potential relevance of these findings to human liver disease, we evaluated its expression and relationship to the patients' clinical status in subjects with cirrhosis. METHODS: Blood sampling from peripheral and central vascular beds was performed intra-operatively for cirrhotic patients at the time of liver transplantation (LT) or trans-jugular intra-hepatic portosystemic shunt (TIPS) procedures to measure angiotensin II (Ang II) and Ang-(1⁻7) peptide levels and ACE and ACE2 enzyme activity. Relevant clinical and hemodynamic data were recorded pre-operatively for all subjects and peripheral blood sampling was repeated 3 months or later post-operatively. RESULTS: Ang-(1⁻-7) and ACE2 activity were up-regulated more than twofold in cirrhotic subjects both at the time of LT and TIPS and levels returned to comparable levels as control subjects post-transplantation. Ang-(1⁻7) levels correlated positively with the degree of liver disease severity, as measured by the model for an end-stage liver disease (MELD) and also with clinical parameters of pathological vasodilatation including cardiac output (CO). There were strong correlations found between the ACE2:ACE and the Ang-(1⁻7):Ang II ratio highlighting the inter-dependence of the alternate and classical arms of the RAS and thus their potential impact on vascular tone. CONCLUSIONS: In human cirrhosis, the alternate RAS is markedly upregulated and the activation of this system is associated strongly with features of the hyperdynamic circulation in advanced human cirrhosis.

13.
World J Gastrointest Pathophysiol ; 10(1): 1-10, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30622832

ABSTRACT

Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver diseases comprise a large group of conditions in which injury is primarily focused on the biliary system. These include congenital diseases (such as biliary atresia and cystic fibrosis), acquired diseases (such as primary sclerosing cholangitis and primary biliary cirrhosis), and those that arise from secondary damage to the biliary tree from obstruction, cholangitis or ischaemia. These conditions are associated with a specific pattern of chronic liver injury centered on damaged bile ducts that drive the development of peribiliary fibrosis and, ultimately, biliary cirrhosis and liver failure. For most, there is no established medical therapy and, hence, these diseases remain one of the most important indications for liver transplantation. As a result, there is a major need to develop new therapies that can prevent the development of chronic biliary injury and fibrosis. This mini-review briefly discusses the pathophysiology of liver fibrosis and its progression to cirrhosis. We make a special emphasis on biliary fibrosis and current therapeutic options, such as angiotensin converting enzyme-2 (known as ACE2) over-expression in the diseased liver as a novel potential therapy to treat this condition.

14.
Invest Ophthalmol Vis Sci ; 60(1): 209-217, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30641549

ABSTRACT

Purpose: There is a substantial body of evidence indicating that corneal sensory innervation is affected by pathology in a range of diseases. However, there are no published studies that have directly assessed whether the nerve fiber density of the different subpopulations of corneal sensory neurons are differentially affected. The present study explored the possibility that the intraepithelial nerve fiber density of corneal polymodal nociceptors and cold thermoreceptors are differentially affected in mice fed with a high-fat high cholesterol (HFHC; 21% fat, 2% cholesterol) diet and in those that also have diabetes. Methods: The mice were fed the HFHC diet for the duration of the experiment (up to 40 weeks). Mice in the diabetes group had hyperglycaemia induced with streptozotocin after 15 weeks on the HFHC diet. Age-matched control animals were fed a standard diet. All corneal nerve fibers were labeled with a pan neuronal antibody (antiprotein gene product 9.5), and polymodal nociceptors and cold thermoreceptors were labeled with antibodies directed against transient receptor potential cation channel, subfamily V, member 1 and transient receptor potential cation channel subfamily M member 8, respectively. Results: The mice fed a HFHC diet and those that in addition have hyperglycemia have similar reductions in corneal nerve fiber density consistent with small fiber neuropathy. Importantly, both treatments more markedly affected the intraepithelial axons of cold thermoreceptors than those of polymodal nociceptors. Conclusions: The results provide evidence that distinct subpopulations of corneal sensory neurons can be differentially affected by pathology.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Epithelium, Corneal/innervation , Nociceptors/metabolism , Thermoreceptors/metabolism , Trigeminal Nerve Diseases/etiology , Trigeminal Nerve/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/complications , Hyperglycemia/etiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Nerve Endings/physiology , Nerve Fibers/pathology , Streptozocin , TRPM Cation Channels/metabolism , TRPV Cation Channels/metabolism , Trigeminal Nerve Diseases/metabolism
15.
Peptides ; 108: 25-33, 2018 10.
Article in English | MEDLINE | ID: mdl-30179652

ABSTRACT

Evidence suggests that the renin angiotensin system (RAS) may play a role in the pathological splanchnic vasodilatation that leads to a hyperdynamic circulation in cirrhosis. An impaired contractile response to the angiotensin II peptide of the classical RAS system has been described in animal models of cirrhosis and in vivo in cirrhotic subjects. Furthermore, in experimental cirrhosis, the so-called alternate arm of the RAS was found to be upregulated and its effector peptide, angiotensin-(1-7) was shown to attenuate splanchnic vascular tone. The aim of this study was to explore the relevance of these findings to human disease. Omental arteries from cirrhotic and controls subjects were studied in isolation using a wire myograph. Varied protocols to evaluate the vasoactivity of RAS mediators were enacted. The contractile response to angiotensin II was comparable in cirrhotic vs control splanchnic arteries (61 ± 9 vs 68 ± 11% KPSS, respectively). Despite this, however, arterial contractility of the cirrhotic vessels correlated negatively with Child Pugh score (p = 0.0003, r=-0.83) and there was evidence that angiotensin II-induced contractility was increased in early cirrhosis. Angiotensin II-induced contractility was attenuated by angiotensin-(1-7) in cirrhotic and control arteries, however, adrenergic responses were not affected by angiotensin-(1-7). Contractile responses to angiotensin II are preserved in narrow lumen human cirrhotic splanchnic arteries and are comparatively augmented in early disease. Angiotensin-(1-7) had no vasodilatory effect on adrenergic tone, however, attenuated angiotensin II-induced contractility, possibly through an Ang-(1-7)-AT1R interaction, and thus may contribute to pathological vasodilatation in human cirrhosis.


Subject(s)
Angiotensin II/physiology , Angiotensin I/physiology , Liver Cirrhosis/metabolism , Omentum/blood supply , Peptide Fragments/physiology , Vasodilation , Female , Humans , Hypertension, Portal , Liver Cirrhosis/physiopathology , Male , Middle Aged , Renin-Angiotensin System
16.
Sci Rep ; 8(1): 10175, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29977014

ABSTRACT

There is no established medical therapy to treat biliary fibrosis resulting from chronic inflammation in the biliary tree. We have recently shown that liver-specific over-expression of angiotensin converting enzyme 2 (ACE2) of the renin angiotensin system (RAS) ameliorated liver fibrosis in mice. Diminazene aceturate (DIZE), a small molecule drug approved by the US Food and Drug Administration, which is used to treat human trypanosomiasis, has been shown to have antifibrotic properties by enhancing ACE2 activity. In this study we sought to determine the therapeutic potential of DIZE in biliary fibrosis using bile duct ligated and multiple drug resistant gene-2 knockout mice. Additionally, human hepatic stellate (LX-2) and mouse Kupffer (KUP5) cell lines were used to delineate intracellular pathways. DIZE treatment, both in vivo and in vitro, markedly inhibited the activation of fibroblastic stellate cells which was associated with a reduced activation of Kupffer cells. Moreover, DIZE-inhibited NOX enzyme assembly and ROS generation, activation of profibrotic transcription factors including p38, Erk1/2 and Smad2/3 proteins and proinflammatory and profibrotic cytokine release. These changes led to a major reduction in biliary fibrosis in both models without affecting liver ACE2 activity. We conclude that DIZE has a potential to treat biliary fibrosis.


Subject(s)
Diminazene/analogs & derivatives , Liver Cirrhosis, Experimental/drug therapy , Liver/drug effects , ATP Binding Cassette Transporter, Subfamily B/genetics , Angiotensin-Converting Enzyme 2 , Animals , Cell Line , Cytokines/metabolism , Diminazene/pharmacology , Diminazene/therapeutic use , Hepatic Stellate Cells , Humans , Kupffer Cells , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/etiology , Liver Cirrhosis, Experimental/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Peptidyl-Dipeptidase A/metabolism , Reactive Oxygen Species/metabolism , Renin-Angiotensin System/drug effects , Treatment Outcome , ATP-Binding Cassette Sub-Family B Member 4
17.
Sci Rep ; 7(1): 12292, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947796

ABSTRACT

The protein oligosaccharyltransferase-48 (OST48) is integral to protein N-glycosylation in the endoplasmic reticulum (ER) but is also postulated to act as a membrane localised clearance receptor for advanced glycation end-products (AGE). Hepatic ER stress and AGE accumulation are each implicated in liver injury. Hence the objective of this study was to increase the expression of OST48 and examine the effects on hepatic function and structure. Groups of 8 week old male mice (n = 10-12/group) over-expressing the gene for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-), were followed for 24 weeks, while randomised to diets either low or high in AGE content. By week 24 of the study, either increasing OST48 expression or consumption of high AGE diet impaired liver function and modestly increased hepatic fibrosis, but their combination significantly exacerbated liver injury in the absence of steatosis. DDOST+/- mice had increased both portal delivery and accumulation of hepatic AGEs leading to central adiposity, insulin secretory defects, shifted fuel usage to fatty and ketoacids, as well as hepatic glycogen accumulation causing hepatomegaly along with hepatic ER and oxidative stress. This study revealed a novel role of the OST48 and AGE axis in hepatic injury through ER stress, changes in fuel utilisation and glucose intolerance.


Subject(s)
Glycation End Products, Advanced/adverse effects , Hexosyltransferases/metabolism , Liver Cirrhosis/pathology , Membrane Proteins/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Feeding Behavior , Glycation End Products, Advanced/blood , Glycation End Products, Advanced/metabolism , Hexosyltransferases/genetics , Humans , Liver/drug effects , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/etiology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Stress/drug effects , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
18.
Curr Gene Ther ; 17(1): 4-16, 2017.
Article in English | MEDLINE | ID: mdl-28292253

ABSTRACT

INTRODUCTION: The first human adeno-associated virus (AAV) was originally discovered in 1960s as a contaminant of adenovirus stock preparation and thus it had not been of medical interest. Throughout the last three decades AAV has gained popularity to be used in gene therapy, mainly due to its replicative defectiveness and lack of pathogenicity in human. In addition, its ability to mediate stable and long-term expression in both non-dividing and dividing cells with specific tissue tropism makes AAV one of the most promising candidates for therapeutic gene transfer to treat many inherited as well as non-inherited disorders. Moreover, the use of AAV is not only restricted to overexpression of recombinant transgene, but also to over-express short hairpin RNA and microRNA to knockdown the expression of genes in targeted tissues. DISCUSSION AND CONCLUSION: This review is organized into four parts. In the first part of the review, we discuss about the discovery and history of AAV, followed by detailed AAV biology such as virus genome, virus structure and its life cycle. In the second part of the review, the discussion is centred on the molecular mechanisms of AAV and tissue transduction, including receptor recognition and cell binding, endosomal entry, virus uncoating, nuclear entry and genome replication. Advantages and limitations of using AAV as a safe vehicle for gene delivery is also discussed. In the third part of the review, we discuss about the most commonly used AAV serotypes and variants isolated from human and non-human primates, focusing on their diverse tissue tropisms, transduction efficiency, immunological profiles and their applications in animal studies. Final part of the review focuses on the recent progress of in-vivo gene transfer using AAV for inherited and non-inherited diseases in both preclinical and clinical settings with a special emphasis on potential clinical applications of AAV in the field of liver disease.


Subject(s)
Dependovirus/genetics , Genetic Diseases, Inborn/therapy , Genetic Therapy , Genetic Vectors/therapeutic use , Genetic Diseases, Inborn/genetics , Genome, Viral , Humans
19.
World J Gastroenterol ; 22(35): 8026-40, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27672297

ABSTRACT

AIM: To determine if manipulation of dietary advanced glycation end product (AGE), intake affects non-alcoholic fatty liver disease (NAFLD) progression and whether these effects are mediated via RAGE. METHODS: Male C57Bl6 mice were fed a high fat, high fructose, high cholesterol (HFHC) diet for 33 wk and compared with animals on normal chow. A third group were given a HFHC diet that was high in AGEs. Another group was given a HFHC diet that was marinated in vinegar to prevent the formation of AGEs. In a second experiment, RAGE KO animals were fed a HFHC diet or a high AGE HFHC diet and compared with wildtype controls. Hepatic biochemistry, histology, picrosirius red morphometry and hepatic mRNA were determined. RESULTS: Long-term consumption of the HFHC diet generated significant steatohepatitis and fibrosis after 33 wk. In this model, hepatic 4-hydroxynonenal content (a marker of chronic oxidative stress), hepatocyte ballooning, picrosirius red staining, α-smooth muscle actin and collagen type 1A gene expression were all significantly increased. Increasing the AGE content of the HFHC diet by baking further increased these markers of liver damage, but this was abrogated by pre-marination in acetic acid. In response to the HFHC diet, RAGE(-/-) animals developed NASH of similar severity to RAGE(+/+) animals but were protected from the additional harmful effects of the high AGE containing diet. Studies in isolated Kupffer cells showed that AGEs increase cell proliferation and oxidative stress, providing a likely mechanism through which these compounds contribute to liver injury. CONCLUSION: In the HFHC model of NAFLD, manipulation of dietary AGEs modulates liver injury, inflammation, and liver fibrosis via a RAGE dependent pathway. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.


Subject(s)
Diet, High-Fat , Glycation End Products, Advanced/administration & dosage , Non-alcoholic Fatty Liver Disease/metabolism , Acetic Acid , Animals , Cholesterol/administration & dosage , Disease Progression , Fatty Liver/metabolism , Fructose/administration & dosage , Inflammation/metabolism , Kupffer Cells/cytology , Liver/metabolism , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , Real-Time Polymerase Chain Reaction , Signal Transduction
20.
PLoS One ; 10(9): e0138732, 2015.
Article in English | MEDLINE | ID: mdl-26406236

ABSTRACT

BACKGROUND & AIMS: Although in cirrhosis with portal hypertension levels of the vasoconstrictor angiotensin II are increased, this is accompanied by increased production of angiotensin (Ang)-(1-7), the endogenous ligand of the Mas receptor (MasR), which blunts hepatic fibrosis and decreases hepatic vascular resistance. Therefore, we investigated the effects of the non-peptidic Ang-(1-7) agonist, AVE0991, in experimental cirrhosis. METHODS: Cirrhosis was induced by bile duct ligation (BDL) or carbon tetrachloride (CCl4) intoxication. The coloured microsphere technique assessed portal and systemic hemodynamic effects of AVE0991 in vivo. Hepatic expression of eNOS, p-eNOS, iNOS, JAK2, ROCK and p-Moesin were analyzed by western blots. Activities of ACE and ACE2 were investigated fluorometrically. Moreover, fibrosis was assessed in BDL rats receiving AVE0991. RESULTS: In vivo, AVE0991 decreased portal pressure (PP) in both rat models of cirrhosis. Importantly, systemic effects were not observed. The hepatic effects of AVE0991 were based on upregulation of vasodilating pathways involving p-eNOS and iNOS, as well as by downregulation of the vasoconstrictive pathways (ROCK, p-Moesin). Short-term treatment with AVE0991 decreased the activity of ACE2, long-term treatment did not affect hepatic fibrosis in BDL rats. CONCLUSIONS: The non-peptidic agonist of Ang-(1-7), AVE0991, decreases portal pressure without influencing systemic pressure. Thus, although it does not inhibit fibrosis, AVE0991 may represent a promising new therapeutic strategy for lowering portal pressure.


Subject(s)
Imidazoles/administration & dosage , Liver Cirrhosis, Experimental/physiopathology , Portal Pressure/drug effects , Vascular Resistance/drug effects , Animals , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Imidazoles/pharmacology , Liver Cirrhosis, Experimental/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Mas , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...