Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 13(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072740

ABSTRACT

This study aims to quantify concentrations of minerals and trace elements in human milk (HM) and infant formula (IF) and evaluate associations with medical, social, environmental, and demographic variables. A prospective, case series study of 170 nursing mothers was made. HM samples were obtained from full-term (colostrum, intermediate and mature HM) and preterm (mature HM) mothers. Variables of interest were assessed by a questionnaire. For comparison, IF samples (n = 30) were analyzed in a cross-sectional study. Concentrations of 35 minerals, essential and toxic trace elements were quantified, 5 for the first time: thallium in HM and IF; strontium in preterm HM; and gallium, lithium and uranium in IF. In preterm and full-term HM, levels of selenium (p < 0.001) were significantly lower than recommended and were associated with low birth weight (p < 0.002). Cesium and strontium concentrations were significantly higher than recommended (p < 0.001). Associations were observed between arsenic and residence in an urban area (p = 0.013), and between lead and smoking (p = 0.024) and well-water consumption (p = 0.046). In IF, aluminum, vanadium, and uranium levels were higher than in HM (p < 0.001); uranium, quantified for the first time, was 100 times higher in all types of IF than in HM. Our results indicate that concentrations of most trace elements were within internationally accepted ranges for HM and IF. However, preterm infants are at increased risk of nutritional deficiencies and toxicity. IF manufacturers should reduce the content of toxic trace elements.


Subject(s)
Milk, Human/chemistry , Minerals/analysis , Pregnancy/statistics & numerical data , Trace Elements/analysis , Adult , Cross-Sectional Studies , Female , Humans , Infant Formula/chemistry , Infant, Newborn , Noxae/analysis , Premature Birth/epidemiology , Socioeconomic Factors , Spain , Young Adult
2.
Anal Chem ; 80(23): 9272-8, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19551946

ABSTRACT

Matrix solid-phase dispersion (MSPD) has been applied to extract arsenical species (arsenite, As(III); arsenate, As(V); monomethylarsonic acid; dimethylarsinic acid, DMA; arsenobetaine, AsB; and arsenocholine) from seafood products. High-performance liquid chromatography coupled to inductively coupled plasma-mass spectrometry was used to separate and detect all arsenic species. Variables affecting MSPD, such as the solid support material (dispersing agent), solid support mass/sample mass ratio, elution solvent composition, and elution solvent volume, have been fully evaluated. Quantitative recoveries for inorganic and organic arsenic species have been obtained when using diatomaceous earth or octadecyl-functionalized silica gel (C18) as a solid support material, with a solid support mass/sample mass ratio of 7.0. Elution of arsenical compounds has been assessed using 10 mL of 50/50 methanol/ultrapure water as an elution solvent. The MSPD method has been found precise, with RSDs of approximately 9% for As(III), DMA, and As(V) and 3% for AsB. The developed procedure has been tested by analyzing different certified reference materials of marine origin such as DORM-2 and BCR 627, which offer certified contents for some arsenic species. The method has been also applied to assess arsenic speciation in different mollusks, cold water fishes, and white fishes.


Subject(s)
Arsenicals/analysis , Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Seafood/analysis , Animals , Arsenicals/isolation & purification , Fishes , Mass Spectrometry/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...