Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 21(3): 500-6, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15070102

ABSTRACT

PURPOSE: The purpose of this work was to evaluate spray-freeze drying and spray drying processes for encapsulation of darbepoetin alfa (NESP, Aranesp). METHODS: Darbepoetin alfa was encapsulated in poly(lactide-co-glycolide) by spray-freeze drying and by spray drying. Integrity was evaluated by size-exclusion chromatography and Western blot. Physical properties and in vitro release kinetics were characterized. Pharmacokinetics and pharmacodynamics were evaluated in nude rats. RESULTS: Microspheres produced by spray drying were larger than those produced by spray-freeze drying (69 microm vs. 29 microm). Postencapsulation integrity was excellent for both processes, with < 2% dimer by size-exclusion chromatography. In vitro release profiles were similar, with low burst (< 25%) and low cumulative protein recovery at 4 weeks (< or = 30%), after which time covalent dimer (< or = 6.5%) and high molecular weight aggregates (< or = 2.3%) were recovered by denaturing extraction. After a single injection, darbepoetin alfa was detected in serum through 4 weeks for all microsphere formulations tested in vivo, although relative bioavailability was higher for spray-freeze drying (28%) compared with spray drying (21%; p = 0.08) as were yields (73-82% vs. 34-57%, respectively). For both processes hemoglobin was elevated for 7 weeks, over twice as long as unencapsulated drug. CONCLUSIONS: Spray drying, conducted at pilot scale with commercial equipment, is comparable to spray-freeze drying for encapsulation of darbepoetin alfa.


Subject(s)
Microspheres , Polyglycolic Acid , Animals , Darbepoetin alfa , Drug Compounding , Freeze Drying , Lactic Acid/chemistry , Particle Size , Polyglactin 910/chemistry , Polyglycolic Acid/chemistry , Polymers/chemistry
2.
Pharm Res ; 21(3): 507-14, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15070103

ABSTRACT

PURPOSE: To evaluate spray-freeze drying and spray drying processes for fabricating micron-sized particles of darbepoetin alfa (NESP, Aranesp) with uniform size distribution and retention of protein integrity, requirements for encapsulation. METHODS: Darbepoetin alfa was spray-freeze dried using ultrasonic atomization at 120 kHz and 25 kHz and spray dried at bench-top and pilot scales. Reconstituted powders were evaluated by size exclusion chromatography and UV/VIS spectroscopy. Powder physical properties were also characterized. RESULTS: Spray-freeze drying resulted in aggregation of darbepoetin alfa. Aggregates (primarily insoluble) formed on drying and/or reconstitution. Particle size distributions were broad (span > or = 3.6) at both nozzle frequencies. Annealing before drying reduced aggregate levels slightly but increased particle size over 5-fold. Spray drying at inlet temperatures up to 135 degrees C (and outlet temperatures up to 95 degrees C) showed little impact on integrity. Integrity at bench-top and pilot scales was identical, with 0.2% dimer and no high molecular weight or insoluble aggregates detected. Particle size was small (< or = 2.3 microm) with uniform distribution (span < or = 1.4) at both process scales. CONCLUSIONS: Under the conditions tested spray drying, conducted at bench-top and pilot scales with commercially available equipment, was superior to spray-freeze drying for the fabrication of darbepoetin alfa particles for encapsulation.


Subject(s)
Darbepoetin alfa , Powders , Chemistry, Pharmaceutical , Desiccation , Freeze Drying , Particle Size , Powders/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...