Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Exp Mol Pathol ; 128: 104812, 2022 10.
Article in English | MEDLINE | ID: mdl-35872013

ABSTRACT

BACKGROUND AND AIMS: In this study ten mouse strains representing ~90% of genetic diversity in laboratory mice (B6C3F1/J, C57BL/6J, C3H/HeJ, A/J, NOD.B1oSnH2/J, NZO/HILtJ, 129S1/SvImJ, WSB/EiJ, PWK/PhJ, CAST/EiJ) were examined to identify the mouse strain with the lowest incidence of cancer. The unique single polymorphisms (SNPs) associated with this low cancer incidence are reported. METHODS: Evaluations of cancer incidence in the 10 mouse strains were based on gross and microscopic diagnosis of tumors. Single nucleotide polymorphisms (SNPs) in the coding regions of the genome were derived from the respective mouse strains located in the Sanger mouse sequencing database and the B6C3F1/N genome from the National Toxicology Program (NTP). RESULTS: The WSB strain had an overall lower incidence of both benign and malignant tumors compared to the other mouse strains. At 2 years, the incidence of total malignant tumors (Poly-3 incidence rate) ranged from 2% (WSB) to 92% (C3H) in males, and 14% (WSB) to 93% (NZO) in females, and the total incidence of benign and malignant tumor incidence ranged from 13% (WSB) to 99% (C3H) in males and 25% (WSB) to 96% (NOD) in females. Single nucleotide polymorphism (SNP) patterns were examined in the following strains: B6C3F1/N, C57BL/6J, C3H/HeJ, 129S1/SvImJ, A/J, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ. We identified 7519 SNPs (involving 5751 Ensembl transcripts of 3453 Ensembl Genes) that resulted in a unique amino acid change in the coding region of the WSB strain. CONCLUSIONS: The inherited genetic patterns in the WSB cancer-resistant mouse strain occurred in genes involved in multiple cell functions including mitochondria, metabolic, immune, and membrane-related cell functions. The unique SNP patterns in a cancer resistant mouse strain provides insights for understanding and developing strategies for cancer prevention.


Subject(s)
Neoplasms , Polymorphism, Single Nucleotide , Male , Female , Mice , Animals , Polymorphism, Single Nucleotide/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Inbred C3H , Phenotype , Mice, Inbred Strains , Neoplasms/genetics , Amino Acids/genetics
2.
Arch Toxicol ; 95(10): 3171-3190, 2021 10.
Article in English | MEDLINE | ID: mdl-34468815

ABSTRACT

Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.


Subject(s)
Bronchial Neoplasms/chemically induced , Cobalt/toxicity , Lung Neoplasms/chemically induced , Oxidative Stress/drug effects , A549 Cells , Adenocarcinoma, Bronchiolo-Alveolar/chemically induced , Adenocarcinoma, Bronchiolo-Alveolar/pathology , Animals , Bronchial Neoplasms/pathology , Carcinogenesis/chemically induced , Cell Line , Dose-Response Relationship, Drug , Dust , Female , Humans , Lung Neoplasms/pathology , Male , Mice , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Alveoli/pathology , Rats , Rats, Inbred F344
3.
J Immunol ; 206(10): 2468-2477, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33883189

ABSTRACT

MRL/lpr mice typically succumb to immune complex-mediated nephritis within the first year of life. However, MRL/lpr mice that only secrete IgM Abs because of activation-induced deaminase deficiency (AID-/-MRL/lpr mice) experienced a dramatic increase in survival. Further crossing of these mice to those incapable of making secretory IgM (µS mice) generated mice lacking any secreted Abs but with normal B cell receptors. Both strains revealed no kidney pathology, yet Ab-deficient mice still experienced high mortality. In this article, we report Ab-deficient MRL/lpr mice progressed to high-grade T cell lymphoma that can be reversed with injection of autoreactive IgM Abs or following adoptive transfer of IgM-secreting MRL/lpr B cells. Anti-nuclear Abs, particularly anti-dsDNA IgM Abs, exhibited tumor-killing activities against a murine T cell lymphoma cell line. Passive transfers of autoreactive IgM Abs into p53-deficient mice increased survival by delaying onset of T cell lymphoma. The lymphoma originated from a double-negative aberrant T cell population seen in MRL/lpr mice and most closely resembled human anaplastic large cell lymphoma. Combined, these results strongly implicate autoreactive IgM Abs in protection against T cell lymphoma.


Subject(s)
Adoptive Transfer/methods , Antibodies, Antinuclear/administration & dosage , Cytidine Deaminase/deficiency , Immunoglobulin M/administration & dosage , Immunoglobulin M/deficiency , Lymphoma, Large-Cell, Anaplastic/immunology , Lymphoma, Large-Cell, Anaplastic/therapy , Animals , Autoimmunity/genetics , B-Lymphocytes/immunology , Cytidine Deaminase/genetics , Disease Models, Animal , Immunoglobulin M/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, Knockout , T-Lymphocytes/immunology , Treatment Outcome , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
4.
Nat Genet ; 52(11): 1189-1197, 2020 11.
Article in English | MEDLINE | ID: mdl-32989322

ABSTRACT

Epidemiological studies have identified many environmental agents that appear to significantly increase cancer risk in human populations. By analyzing tumor genomes from mice chronically exposed to 1 of 20 known or suspected human carcinogens, we reveal that most agents do not generate distinct mutational signatures or increase mutation burden, with most mutations, including driver mutations, resulting from tissue-specific endogenous processes. We identify signatures resulting from exposure to cobalt and vinylidene chloride and link distinct human signatures (SBS19 and SBS42) with 1,2,3-trichloropropane, a haloalkane and pollutant of drinking water, and find these and other signatures in human tumor genomes. We define the cross-species genomic landscape of tumors induced by an important compendium of agents with relevance to human health.


Subject(s)
Carcinogens/toxicity , Mutation , Animals , Carcinogenesis/genetics , DNA Mutational Analysis , Environmental Pollutants/toxicity , Female , Genome , Humans , Male , Mice , Mutation Rate , Propane/analogs & derivatives , Propane/toxicity , Species Specificity
5.
Toxicol Pathol ; 47(6): 665-783, 2019 08.
Article in English | MEDLINE | ID: mdl-31526133

ABSTRACT

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.


Subject(s)
Biomedical Research/standards , Bone Marrow Diseases/classification , Bone Marrow , Lymphatic Diseases/classification , Lymphoid Tissue , Animals , Animals, Laboratory , Bone Marrow/anatomy & histology , Bone Marrow/pathology , Bone Marrow Diseases/blood , Bone Marrow Diseases/immunology , Bone Marrow Diseases/pathology , Lymphatic Diseases/blood , Lymphatic Diseases/immunology , Lymphatic Diseases/pathology , Lymphoid Tissue/anatomy & histology , Lymphoid Tissue/pathology , Mice , Rats , Terminology as Topic
6.
Toxicol Pathol ; 47(5): 577-584, 2019 07.
Article in English | MEDLINE | ID: mdl-31064278

ABSTRACT

The majority of the tumors in the gastrointestinal (GI) tract of rats and mice, with spindle cell morphology, are diagnosed as smooth muscle tumors (SMTs). Similarly, several decades ago human GI tumors with spindle cell morphology were also diagnosed as SMTs. However, later investigations identified most of these tumors in humans as gastrointestinal stromal tumors (GISTs). The GISTs are considered to arise from the interstitial cells of Cajal located throughout the GI tract. Positive immunohistochemical staining with CKIT antibody is a well-accepted diagnostic marker for GISTs in humans. Since there is a considerable overlap between the histomorphology of SMTs and GISTs, it is not possible to distinguish them on hematoxylin and eosin stained sections. As a result, GISTs are not routinely diagnosed in toxicological studies. The current study was designed to evaluate the tumors diagnosed as leiomyoma or leiomyosarcoma in the National Toxicology Program's 2-year bioassays using CKIT, smooth muscle actin, and desmin immunohistochemistry. The results demonstrate that most of the mouse SMTs diagnosed as leiomyoma or leiomyosarcoma are likely GISTs, whereas in rats the tumors are likely SMTs and not GISTs.


Subject(s)
Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/pathology , Gastrointestinal Tract/pathology , Smooth Muscle Tumor/pathology , Animals , Databases, Factual , Female , Gastrointestinal Neoplasms/genetics , Gastrointestinal Stromal Tumors/genetics , Immunohistochemistry , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Male , Mice , Proto-Oncogene Proteins c-kit/genetics , Rats , Smooth Muscle Tumor/genetics , Species Specificity , Toxicity Tests
7.
Toxicol Pathol ; 46(5): 488-510, 2018 07.
Article in English | MEDLINE | ID: mdl-29966501

ABSTRACT

Immunohistochemistry (IHC) is a valuable tool in pathology. This review provides a brief description of the technical aspects of IHC and a detailed discussion on the variables that affect the results, interpretation, and reproducibility of IHC results. Lists of antibodies that have and have not worked in IHC on various mouse and rat tissues in our laboratory are provided as a guidance for selection of antibodies. An approach to IHC method optimization is presented. Finally, the critical information that should be included as a part of peer-reviewed manuscript is also discussed.


Subject(s)
Clinical Laboratory Techniques/methods , Immunohistochemistry/methods , Pathology/methods , Toxicology/methods , Animals , Antibodies/chemistry , Humans , Mice , Rats , Reproducibility of Results , Tissue Fixation
8.
BMC Genomics ; 19(1): 487, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925311

ABSTRACT

BACKGROUND: The rat genome was sequenced in 2004 with the aim to improve human health altered by disease and environmental influences through gene discovery and animal model validation. Here, we report development and testing of a probe set for whole exome sequencing (WES) to detect sequence variants in exons and UTRs of the rat genome. Using an in-silico approach, we designed probes targeting the rat exome and compared captured mutations in cancer-related genes from four chemically induced rat tumor cell lines (C6, FAT7, DSL-6A/C1, NBTII) to validated cancer genes in the human database, Catalogue of Somatic Mutations in Cancer (COSMIC) as well as normal rat DNA. Paired, fresh frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) liver tissue from naive rats were sequenced to confirm known dbSNP variants and identify any additional variants. RESULTS: Informatics analysis of available gene annotation from rat RGSC6.0/rn6 RefSeq and Ensembl transcripts provided 223,636 unique exons representing a total of 26,365 unique genes and untranslated regions. Using this annotation and the Rn6 reference genome, an in-silico probe design generated 826,878 probe sequences of which 94.2% were uniquely aligned to the rat genome without mismatches. Further informatics analysis revealed 25,249 genes (95.8%) covered by at least one probe and 23,603 genes (93.5%) had every exon covered by one or more probes. We report high performance metrics from exome sequencing of our probe set and Sanger validation of annotated, highly relevant, cancer gene mutations as cataloged in the human COSMIC database, in addition to several exonic variants in cancer-related genes. CONCLUSIONS: An in-silico probe set was designed to enrich the rat exome from isolated DNA. The platform was tested on rat tumor cell lines and normal FF and FFPE liver tissue. The method effectively captured target exome regions in the test DNA samples with exceptional sensitivity and specificity to obtain reliable sequencing data representing variants that are likely chemically induced somatic mutations. Genomic discovery conducted by means of high throughput WES queries should benefit investigators in discovering rat genomic variants in disease etiology and in furthering human translational research.


Subject(s)
Exome Sequencing/methods , Exome/genetics , High-Throughput Nucleotide Sequencing/methods , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Humans , Mice , Rats , Sequence Analysis, DNA/methods , Tissue Fixation
9.
Toxicol Pathol ; 46(4): 421-430, 2018 06.
Article in English | MEDLINE | ID: mdl-29706125

ABSTRACT

Congenital uterine wall cysts arising from paramesonephric (Müllerian) and mesonephric (Wolffian) ducts are typically incidental findings in most species. We used immunohistochemistry to characterize and determine the origin of uterine cysts in Sprague-Dawley (SD) rats from multigeneration studies conducted by the National Toxicology Program. Subserosal uterine cysts were observed in 20 of the 2,400 SD rats evaluated in five studies, and 10 cysts were characterized for this study. Single cysts were unilocular, fluid-filled, and occurred throughout the uterus. Microscopically, all cysts had a well-developed smooth muscle wall, lined by flattened to cuboidal, sometimes ciliated, epithelium that stained intensely positive for cytokeratin 18 and paired box protein 8 (PAX8). Most cyst epithelia displayed weak to moderate positivity for progesterone receptor (PR) and/or estrogen receptor α (ER-α), as well as were negative for GATA binding protein 3 (GATA3). Cyst lumens contained basophilic flocculent material. The cysts appeared to be developmental anomalies arising from paramesonephric tissue based on positive PAX8 and ER-α and/or PR staining. Additionally, 70% of the cysts lacked GATA3 expression. Taken together, the subserosal uterine cysts observed in adult rats in these studies most likely arose from the paramesonephric duct.


Subject(s)
Cysts/pathology , Mullerian Ducts/pathology , Uterine Diseases/pathology , Animals , Cysts/congenital , Female , Rats , Rats, Sprague-Dawley , Uterine Diseases/congenital , Wolffian Ducts/pathology
10.
Toxicol Ind Health ; 33(5): 385-405, 2017 May.
Article in English | MEDLINE | ID: mdl-27343050

ABSTRACT

Metalworking fluids (MWFs) are complex formulations designed for effective lubricating, cooling, and cleaning tools and parts during machining operations. Adverse health effects such as respiratory symptoms, dermatitis, and cancer have been reported in workers exposed to MWFs. Several constituents of MWFs have been implicated in toxicity and have been removed from the formulations over the years. However, animal studies with newer MWFs demonstrate that they continue to pose a health risk. This investigation examines the hypothesis that unrecognized health hazards exist in currently marketed MWF formulations that are presumed to be safe based on hazard assessments of individual ingredients. In vivo 13-week inhalation studies were designed to characterize and compare the potential toxicity of four MWFs: Trim VX, Cimstar 3800, Trim SC210, and Syntilo 1023. Male and female Wistar Han rats or Fischer 344N/Tac rats and B6C3F1/N mice were exposed to MWFs via whole-body inhalation at concentrations of 0, 25, 50, 100, 200, or 400 mg/m3 for 13 weeks, after which, survival, body and organ weights, hematology and clinical chemistry, histopathology, and genotoxicity were assessed following exposure. Although high concentrations were used, survival was not affected and toxicity was primarily within the respiratory tract of male and female rats and mice. Minor variances in toxicity were attributed to differences among species as well as in the chemical components of each MWF. Pulmonary fibrosis was present only in rats and mice exposed to Trim VX. These data confirm that newer MWFs have the potential to cause respiratory toxicity in workers who are repeatedly exposed via inhalation.


Subject(s)
Inhalation Exposure/analysis , Lubricants/toxicity , Lung , Metallurgy , Pulmonary Fibrosis , Animals , Female , Larynx/chemistry , Larynx/drug effects , Lung/chemistry , Lung/drug effects , Male , Mice , Nose/chemistry , Nose/drug effects , Oils/toxicity , Organ Size/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Rats , Surface-Active Agents/toxicity , Toxicity Tests
11.
Toxicol Pathol ; 44(2): 173-88, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26879688

ABSTRACT

Historically, there has been confusion relating to the diagnostic nomenclature for individual cell death. Toxicologic pathologists have generally used the terms "single cell necrosis" and "apoptosis" interchangeably. Increased research on the mechanisms of cell death in recent years has led to the understanding that apoptosis and necrosis involve different cellular pathways and that these differences can have important implications when considering overall mechanisms of toxicity, and, for these reasons, the separate terms of apoptosis and necrosis should be used whenever differentiation is possible. However, it is also recognized that differentiation of the precise pathway of cell death may not be important, necessary, or possible in routine toxicity studies and so a more general term to indicate cell death is warranted in these situations. Morphological distinction between these two forms of cell death can sometimes be straightforward but can also be challenging. This article provides a brief discussion of the cellular mechanisms and morphological features of apoptosis and necrosis as well as guidance on when the pathologist should use these terms. It provides recommended nomenclature along with diagnostic criteria (in hematoxylin and eosin [H&E]-stained sections) for the most common forms of cell death (apoptosis and necrosis). This document is intended to serve as current guidance for the nomenclature of cell death for the International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Groups and the toxicologic pathology community at large. The specific recommendations are:Use necrosis and apoptosis as separate diagnostic terms.Use modifiers to denote the distribution of necrosis (e.g., necrosis, single cell; necrosis, focal; necrosis, diffuse; etc.).Use the combined term apoptosis/single cell necrosis whenThere is no requirement or need to split the processes, orWhen the nature of cell death cannot be determined with certainty, orWhen both processes are present together. The diagnosis should be based primarily on the morphological features in H&E-stained sections. When needed, additional, special techniques to identify and characterize apoptosis can also be used.


Subject(s)
Apoptosis , Necrosis , Pathology/standards , Terminology as Topic , Toxicology/standards , Animals , Male , Mice , Rats , Rats, Sprague-Dawley
12.
Toxicol Pathol ; 43(6): 865-71, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26157037

ABSTRACT

Most uterine cancers, the most common gynecological malignancies in women in developed countries, are hormone-dependent endometrial adenocarcinomas (EACs) that express estrogen and progesterone receptors. Although rat strains exist with a high spontaneous incidence of EAC, the Fischer 344 (F344) strain, previously one of the most commonly used strains in carcinogenicity testing, is not a high-incidence strain. To better understand the biology of this neoplasm, we assessed estrogen receptor α (ER), progesterone receptor (PR), and Ki-67 expression using immunohistochemistry in spontaneous EAC in 18 F344 rats used as control animals in 2-year National Toxicology Program bioassays. Of the 18 tumors, 9 were well-differentiated and 9 were poorly differentiated. Most tumors, 7/18, were ER+PR+, as observed in women. Of the remainder, 6/18 were ER+PR-, 2/18 were ER-PR+, and 3/18 were ER-PR-. Well-differentiated tumors were ER+ (8/9) more often than poorly differentiated tumors (5/9). The percentage of ER+ tumors (72%) in rats was similar to that seen in women, but rats less frequently had PR+ (50%) tumors than women. The heterogeneous estrogen and progesterone receptor immunophenotypes observed in F344 rats in this study highlight the importance of evaluating hormone receptor expression in animal models used for chemical evaluations.


Subject(s)
Adenocarcinoma/metabolism , Estrogen Receptor alpha/biosynthesis , Receptors, Progesterone/biosynthesis , Uterine Neoplasms/metabolism , Adenocarcinoma/pathology , Animals , Female , Immunohistochemistry , Ki-67 Antigen/biosynthesis , Rats , Rats, Inbred F344 , Uterine Neoplasms/pathology , Uterus/metabolism , Uterus/pathology
13.
Toxicol Pathol ; 43(6): 872-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26059825

ABSTRACT

Rodent lung tumors are morphologically similar to a subtype of human lung adenocarcinomas. The objective of this study was to evaluate Kirsten rat sarcoma oncogene homolog (Kras), epidermal growth factor receptor (Egfr), and tumor protein 53 (Tp53) mutations, which are relevant to human lung cancer, in cobalt metal dust (CMD)-induced alveolar/bronchiolar tumors of B6C3F1/N mice and F344/NTac rats. Kras mutations were detected in 67% (mice) and 31% (rats) of CMD-induced lung tumors and were predominantly exon 1 codon 12 G to T transversions (80% in mice and 57% in rats). Egfr mutations were detected in 17% (both mice and rats) of CMD-induced lung tumors and were predominantly in exon 20 with 50% G to A transitions (mice and rats). Tp53 mutations were detected in 19% (mice) and 23% (rats) of CMD-induced lung tumors and were predominant in exon 5 (mice, 69% transversions) and exon 6 (rats, all transitions). No mutations were observed for these genes in spontaneous lung tumors or normal lungs from untreated controls. Ames assay indicated that CMD is mutagenic in the absence but not in the presence of S9 mix. Thus, the mutation data (G to T transversions) and Ames assay results suggest that oxidative damage to DNA may be a contributing factor in CMD-induced pulmonary carcinogenesis in rodents.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar/chemically induced , Adenocarcinoma, Bronchiolo-Alveolar/genetics , Cobalt/toxicity , ErbB Receptors/genetics , Genes, p53/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma, Bronchiolo-Alveolar/pathology , Animals , DNA Mutational Analysis , DNA, Neoplasm/biosynthesis , DNA, Neoplasm/genetics , Dust , ErbB Receptors/drug effects , Exons/genetics , Female , Genes, p53/drug effects , Inhalation Exposure , Lung Neoplasms/pathology , Male , Mice , Mutagenicity Tests , Mutation/drug effects , Proto-Oncogene Proteins p21(ras)/drug effects , Rats
14.
J Toxicol Pathol ; 28(1): 51-3, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26023262

ABSTRACT

The INHAND Proposal (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) has been operational since 2005. A Global Editorial Steering Committee (GESC) manages the overall objectives of the project and the development of harmonized terminology for each organ system is the responsibility of the Organ Working Groups (OWG), drawing upon experts from North America, Europe and Japan.Great progress has been made with 9 systems published to date - Respiratory, Hepatobiliary, Urinary, Central/Peripheral Nervous Systems, Male Reproductive and Mammary, Zymbals, Clitoral and Preputial Glands in Toxicologic Pathology and the Integument and Soft Tissue and Female Reproductive System in the Journal of Toxicologic Pathology as supplements and on a web site - www.goreni.org. INHAND nomenclature guides offer diagnostic criteria and guidelines for recording lesions observed in rodent toxicity and carcinogenicity studies. The guides provide representative photo-micrographs of morphologic changes, information regarding pathogenesis, and key references. During 2012, INHAND GESC representatives attended meetings with representatives of the FDA Center for Drug Evaluation and Research (CDER), Clinical Data Interchange Standards Consortium (CDISC), and the National Cancer Institute (NCI) Enterprise Vocabulary Services (EVS) to begin incorporation of INHAND terminology as preferred terminology for SEND (Standard for Exchange of Nonclinical Data) submissions to the FDA. The interest in utilizing the INHAND nomenclature, based on input from industry and government toxicologists as well as information technology specialists, suggests that there will be wide acceptance of this nomenclature. The purpose of this publication is to provide an update on the progress of INHAND.

15.
Toxicology ; 333: 195-205, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-25896363

ABSTRACT

Occupational exposure to cobalt is of widespread concern due to its use in a variety of industrial processes and the occurrence of occupational disease. Due to the lack of toxicity and carcinogenicity data following exposure to cobalt, and questions regarding bioavailability following exposure to different forms of cobalt, the NTP conducted two chronic inhalation exposure studies in rats and mice, one on soluble cobalt sulfate heptahydrate, and a more recent study on insoluble cobalt metal. Herein, we compare and contrast the toxicity profiles following whole-body inhalation exposures to these two forms of cobalt. In general, both forms were genotoxic in the Salmonella T98 strain in the absence of effects on micronuclei. The major sites of toxicity and carcinogenicity in both chronic inhalation studies were the respiratory tract in rats and mice, and the adrenal gland in rats. In addition, there were distinct sites of toxicity and carcinogenicity noted following exposure to cobalt metal. In rats, carcinogenicity was observed in the blood, and pancreas, and toxicity was observed in the testes of rats and mice. Taken together, these findings suggest that both forms of cobalt, soluble and insoluble, appear to be multi-site rodent carcinogens following inhalation exposure.


Subject(s)
Cobalt/toxicity , Adrenal Gland Neoplasms/chemically induced , Adrenal Gland Neoplasms/pathology , Adrenal Medulla/drug effects , Adrenal Medulla/pathology , Animals , Carcinogenicity Tests , Cobalt/chemistry , Female , Hematologic Neoplasms/chemically induced , Hematologic Neoplasms/pathology , Inhalation Exposure , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Male , Mice , Mutagenicity Tests , Pancreatic Neoplasms/chemically induced , Pancreatic Neoplasms/pathology , Rats, Inbred F344 , Respiratory System/drug effects , Respiratory System/pathology , Risk Assessment , Salmonella/drug effects , Salmonella/genetics , Solubility , Species Specificity , Testis/drug effects , Testis/pathology , Time Factors , Toxicity Tests, Chronic
16.
Free Radic Biol Med ; 81: 100-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25614459

ABSTRACT

This is the newest report in a series of publications aiming to identify a blood-based antioxidant biomarker that could serve as an in vivo indicator of oxidative stress. The goal of the study was to test whether acutely exposing Göttingen mini pigs to the endotoxin lipopolysaccharide (LPS) results in a loss of antioxidants from plasma. We set as a criterion that a significant effect should be measured in plasma and seen at both doses and at more than one time point. Animals were injected with two doses of LPS at 2.5 and 5 µg/kg iv. Control plasma was collected from each animal before the LPS injection. After the LPS injection, plasma samples were collected at 2, 16, 48, and 72 h. Compared with the controls at the same time point, statistically significant losses were not found for either dose at multiple time points in any of the following potential markers: ascorbic acid, tocopherols (α, δ, γ), ratios of GSH/GSSG and cysteine/cystine, mixed disulfides, and total antioxidant capacity. However, uric acid, total GSH, and total Cys were significantly increased, probably because LPS had a harmful effect on the liver. The leakage of substances from damaged cells into the plasma may have increased plasma antioxidant concentrations, making changes difficult to interpret. Although this study used a mini-pig animal model of LPS-induced oxidative stress, it confirmed our previous findings in different rat models that measurement of antioxidants in plasma is not useful for the assessment of oxidative damage in vivo.


Subject(s)
Antioxidants/metabolism , Oxidative Stress , Animals , Ascorbic Acid/blood , Biomarkers/blood , Cysteine/blood , Cystine/blood , Disulfides/blood , Glutathione/blood , Inflammation/blood , Inflammation/chemically induced , Inflammation/diagnosis , Inflammation/pathology , Injections, Intravenous , Lipopolysaccharides , Male , Rats , Tocopherols/blood , Uric Acid/blood
17.
Toxicol Pathol ; 43(5): 681-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25452433

ABSTRACT

Methyl eugenol induces neuroendocrine (NE) cell hyperplasia and tumors in F344/N rat stomach. Detailed histopathological and immunohistochemical (IHC) characterization of these tumors has not been previously reported. The objective of this study was to fill that data gap. Archived slides and paraffin blocks were retrieved from the National Toxicology Program Archives. NE hyperplasias and tumors were stained with chromogranin A, synaptophysin, amylase, gastrin, H(+)/K(+) adenosine triphosphatase (ATPase), pepsinogen, somatostatin, and cytokeratin 18 (CK18) antibodies. Many of the rats had gastric mucosal atrophy, due to loss of chief and parietal cells. The hyperplasias and tumors were confined to fundic stomach, and females were more affected than the males. Hyperplasia of NE cells was not observed in the pyloric region. Approximately one-third of the females with malignant NE tumors had areas of pancreatic acinar differentiation. The rate of metastasis was 21%, with liver being the most common site of metastasis. Immunohistochemically, the hyperplasias and tumors stained consistently with chromogranin A and synaptophysin. Neoplastic cells were also positive for amylase and CK18 and negative for gastrin, somatostatin, H(+)/K(+) ATPase, and pepsinogen. Metastatic neoplasms histologically similar to the primary neoplasm stained positively for chromogranin A and synaptophysin. Based on the histopathological and IHC features, the neoplasms appear to arise from enterochromaffin-like cells.


Subject(s)
Eugenol/analogs & derivatives , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Animals , Eugenol/toxicity , Female , Immunohistochemistry , Male , Neuroendocrine Cells/drug effects , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Neuroendocrine Tumors/chemically induced , Rats , Rats, Inbred F344 , Stomach Neoplasms/chemically induced
18.
J Toxicol Pathol ; 27(3-4 Suppl): 1S-107S, 2014.
Article in English | MEDLINE | ID: mdl-25516636

ABSTRACT

The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the female reproductive tract of laboratory rats and mice, with color photomicrographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. There is also a section on normal cyclical changes observed in the ovary, uterus, cervix and vagina to compare normal physiological changes with pathological lesions. A widely accepted and utilized international harmonization of nomenclature for female reproductive tract lesions in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.

19.
Toxicol Pathol ; 42(2): 458-60, 2014.
Article in English | MEDLINE | ID: mdl-24488020

ABSTRACT

Toxicologists and pathologists worldwide will benefit from a new, website-based, and completely searchable Nonneoplastic Lesion Atlas just released by the U.S. National Toxicology Program (NTP). The atlas is a much-needed resource with thousands of high-quality, zoomable images and diagnostic guidelines for each rodent lesion. Liver, gallbladder, nervous system, bone marrow, lower urinary tract and skin lesion images, and diagnostic strategies are available now. More organ and biological systems will be added with a total of 22 chapters planned for the completed project. The atlas will be used by the NTP and its many pathology partners to standardize lesion diagnosis, terminology, and the way lesions are recorded. The goal is to improve our understanding of nonneoplastic lesions and the consistency and accuracy of their diagnosis between pathologists and laboratories. The atlas is also a useful training tool for pathology residents and can be used to bolster any organization's own lesion databases. Researchers have free access to this online resource at www.ntp.niehs.nih.gov/nonneoplastic.


Subject(s)
Atlases as Topic , Databases, Factual , Internet , Pathology , Toxicology , Animals , Humans , Mice , Rats , United States
20.
Toxicol Pathol ; 41(2): 326-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334696

ABSTRACT

Hexavalent chromium (Cr(VI)) is a contaminant of water and soil and is a human lung carcinogen. Trivalent chromium (Cr(III)), a proposed essential element, is ingested by humans in the diet and in dietary supplements such as chromium picolinate (CP). The National Toxicology Program (NTP) demonstrated that Cr(VI) is also carcinogenic in rodents when administered in drinking water as sodium dichromate dihydrate (SDD), inducing neoplasms of the oral cavity and small intestine in rats and mice, respectively. In contrast, there was no definitive evidence of toxicity or carcinogenicity following exposure to Cr(III) administered in feed as CP monohydrate (CPM). Cr(VI) readily enters cells via nonspecific anion channels, in contrast to Cr(III), which cannot easily pass through the cell membrane. Extracellular reduction of Cr(VI) to Cr(III), which occurs primarily in the stomach, is considered a mechanism of detoxification, while intracellular reduction is thought to be a mechanism of genotoxicity and carcinogenicity. Tissue distribution studies in additional groups of male rats and female mice demonstrated higher Cr concentrations in tissues following exposure to Cr(VI) compared to controls and Cr(III) exposure at a similar external dose, indicating that some of the Cr(VI) escaped gastric reduction and was distributed systemically. The multiple potential pathways of Cr-induced genotoxicity will be discussed.


Subject(s)
Chromium/toxicity , Animals , Carcinogenicity Tests , Chromium/chemistry , Chromium/pharmacokinetics , Duodenum/drug effects , Duodenum/pathology , Female , Histiocytes , Hyperplasia/chemically induced , Liver/drug effects , Liver/pathology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Male , Mice , Mouth Mucosa/drug effects , Mouth Mucosa/pathology , Mutagenicity Tests , Neoplasms/chemically induced , Rats , Tissue Distribution , Tongue/drug effects , Tongue/pathology , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...