Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Fuels ; 34(11): 14688-14707, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33250570

ABSTRACT

This work (and the companion paper, Part II) presents new experimental data for the combustion of n-C3-C6 alcohols (n-propanol, n-butanol, n-pentanol, n-hexanol) and a lumped kinetic model to describe their pyrolysis and oxidation. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels. Using the reaction class approach, the reference kinetic parameters have been determined based on experimental, theoretical, and kinetic modeling studies previously reported in the literature, providing a consistent set of rate rules that allow easy extension and good predictive capability. The modeling approach is based on the assumption of an alkane-like and alcohol-specific moiety for the alcohol fuel molecules. A thorough review and discussion of the information available in the literature supports the selection of the kinetic parameters that are then applied to the n-C3-C6 alcohol series and extended for further proof to describe n-octanol oxidation. Because of space limitations, the large amount of information, and the comprehensive character of this study, the manuscript has been divided into two parts. Part I describes the kinetic model as well as the lumping techniques and provides a synoptic synthesis of its wide range validation made possible also by newly obtained experimental data. These include speciation measurements performed in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol and ignition delay times of ethanol, n-propanol, n-butanol, n-pentanol/air mixtures measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. These data are presented and discussed in detail in Part II, together with detailed comparisons with model predictions and a deep kinetic discussion. This work provides new experimental targets that are useful for kinetic model development and validation (Part II), as well as an extensively validated kinetic model (Part I), which also contains subsets of other reference components for real fuels, thus allowing the assessment of combustion properties of new sustainable fuels and fuel mixtures.

2.
Energy Fuels ; 34(11): 14708-14725, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33250571

ABSTRACT

This work presents new experimental data for n-C3-C6 alcohol, combustion (n-propanol, n-butanol, n-pentanol, n-hexanol). Speciation measurements have been carried out in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol. Ignition delay times of ethanol, n-propanol, n-butanol, and n-pentanol/air mixtures were measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels as described in Part I of this work (Pelucchi M.; Namysl S.; Ranzi E.Combustion of n-C3-C6 linear alcohol: an experimental and kinetic modeling study. Part I: reaction classes, rate rules, model lumping and validation. Submitted to Energy and Fuels, 2020). Part II describes in detail the facilities used for this systematic experimental investigation of n-C3-C6 alcohol combustion and presents a complete validation of the kinetic model by means of comparisons with the new data and measurements previously reported in the literature for both pyrolytic and oxidative conditions. Kinetic analyses such as rate of production and sensitivity analyses are used to highlight the governing reaction pathways and reasons for existing deviations, motivating possible further improvements in our chemistry mechanism.

3.
J Phys Chem A ; 122(39): 7894-7909, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30200758

ABSTRACT

Guaiacol or 2-methoxy phenol is one of the main primary tars produced during lignin pyrolysis. Tar conversion in the gas phase influences the production of gaseous and condensable products, and is also responsible for PAH and soot formation during biomass and bio-oil gasification or combustion. Guaiacol pyrolysis and oxidation under stoichiometric conditions were studied in a jet stirred reactor between 623 and 923 K for a residence time of 2 s and under a pressure of 800 Torr (106.7 kPa). Speciation was obtained thanks to online gas chromatography using flame ionization detection and mass spectrometry and allowed the quantification of 22 species in pyrolysis and 42 species in oxidation. Decomposition of guaiacol starts at 650 K, and a conversion degree of 50% is obtained at about 785 K in pyrolysis and 765 K in oxidation. The main products of reaction are pyrocatechol o-HOC6H4OH, o-hydroxybenzaldehyde, methylcatechols, and light products, such as methane, carbon monoxide, ethylene, and hydrogen. A detailed kinetic model based on a combustion model for light aromatics and anisole has been extended to guaiacol. Thermochemical data of guaiacol and main products were calculated theoretically at the CBS-QB3 level of theory. The model predicts well the conversion of guaiacol and the formation of the main products. Guaiacol decomposes mainly through a unimolecular O-C bond breaking to hydroxy phenoxy and methyl radicals in both pyrolysis and oxidation, but H atom abstractions are also of importance in the low temperature range of the study. The unimolecular mechanism leads mainly to pyrocatechol and methylcatechols, whereas the chain radical mechanism is responsible for the formation of hydroxybenzaldehyde. As for anisole but in a much lower extent, an early formation of benzene and soot precursors is observed.

4.
J Phys Chem A ; 116(21): 5100-11, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22591104

ABSTRACT

An experimental study of the oxidation of ethylcyclohexane has been performed in a jet-stirred reactor with online gas chromatography, under quasi-atmospheric pressure (800 Torr), at temperatures ranging from 500 to 1100 K (low- and intermediate-temperature zone including the negative temperature coefficient area), at a residence time of 2 s, and for three equivalence ratios (0.25, 1, and 2). Ethylcyclohexane displays important low-temperature reactivity with a well-marked negative temperature coefficient behavior. In addition to 47 products with a mass lower than ethylcyclohexane which have been quantified, many species with a C(8)H(14)O formula (molecular weight of 126) were detected by GC-MS and 7 of them were quantified. These molecules are cyclic ethers, ketones, and aldehydes with the same carbon skeleton as the reactant. Experiments were also carried on under the same conditions for two other C(8) hydrocarbons, n-octane and 1-octene, showing that the reactivity of ethylcyclohexane is close to that of the alkene and lower than that of the alkane. Simulations using a detailed kinetic model of the literature allow a good prediction of the global reactivity and of the main hydrocarbon products for temperatures above 800 K. The main reaction channels leading to the observed reaction products at both low (below 800 K) and intermediate temperature (above 800 K) are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...