Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(10): 10888-10898, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31953766

ABSTRACT

Microplastics are a global environmental pollution. Due to this fact, new solutions are needed to reduce the amount in various aquatic environments. A new concept introduced by Herbort and Schuhen from the year 2016 describes the agglomeration of microplastics in water using silicon-based precursors. In the study presented here, alkyltrichlorosilanes with different linear and branched alkyl groups and a chain length between 1 and 18 carbon (C-) atoms are investigated for their suitability to fix microplastics (mixtures of polyethylene (PE) and polypropylene (PP)) and to form larger agglomerates. As the alkyl group has a major influence on the reaction rate and agglomeration behavior, we present here the extensive data collection of the evaluation of the best case. The removal efficiency is determined gravimetrically. The reaction behavior and the fixation process are characterized by hydrolysis kinetics. 29Si-MAS-NMR spectroscopy, IR spectroscopy, and thermogravimetry (TGA) are used to characterize the chemical composition of the agglomerates. Finally, the use of optical coherence tomography (OCT) allows the visualization of the formed agglomerates. The results show that the different alkyl groups have a strong impact on the suitability of the alkyltrichlorosilanes for the agglomeration, as they influence the hydrolysis and condensation kinetics in water and the affinity to the microplastics. Best suited for microplastic removal were intermediate chain length between 3 and 5 C-atoms.


Subject(s)
Polyethylene/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Microplastics , Plastics , Polypropylenes/analysis , Water
2.
Environ Sci Pollut Res Int ; 25(15): 15226-15234, 2018 May.
Article in English | MEDLINE | ID: mdl-29675819

ABSTRACT

Based on a new concept for the sustainable removal of microplastics from freshwater systems, a case study for a pH-induced agglomeration and subsequent removal of polyethylene and polypropylene particles from water is presented. The two-step-based process includes firstly a localization and secondly an aggregation of microplastic particles (250-350 µM) in a physicochemical process. The research describes a strong increase in the particle size independent of pH of the aquatic milieu induced by the addition of trichlorosilane-substituted Si derivatives. The resulting Si-based microplastic aggregates (particle size after aggregation is 2-3 cm) could be easily removed by use of, e.g., sand traps. Due to the effect that microplastic particles form agglomeration products under every kind of process conditions (e.g., various pH, various polymer concentrations), the study shows a high potential for the sustainable removal of particles from wastewater.


Subject(s)
Environmental Monitoring/methods , Fresh Water/chemistry , Polyethylene/analysis , Polypropylenes/analysis , Water Pollutants, Chemical/analysis , Particle Size , Wastewater/chemistry , Water Purification/methods
3.
Environ Sci Pollut Res Int ; 24(12): 11061-11065, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27421855

ABSTRACT

Environmental pollution caused by inert anthropogenic stressors such as microplastics in aquatic media is constantly increasing. Through the proliferating use of plastic products in daily life, more and more plastic particles enter waters as primary microplastics. Even though large scale plastic items such as plastic bottles and bags represent the highest percentage of plastic waste, their degeneration also generates microparticles and nanoparticles (secondary microplastics). Modern sewage treatment plants require innovative ideas in order to deal with this man-made problem. State-of-the-art technology offers approaches to minimise the amount of microplastics in aquatic systems. These technologies, however, are either insufficient or very costly, as well as time-consuming in both cases. The conceptual idea presented here is to apply innovative inorganic-organic hybrid silica gels which provide a cost-effective and straightforward approach. Currently, the synthesis of preorganised bioinspired compounds is advancing in order to produce functionalised hybrid silica gels in a further step. These gels have the ability to remove stressors such as microplastics from waste water. By means of the sol-gel process, bioinspired silane compounds are currently being permuted to macromolecules and examined with respect to their properties as fixation and filter material in order to remove the hydrophobic anthropogenic stressors sustainably. Here, the reproduction of biological systems plays a significant role. In particular in material sciences, this approach is becoming increasingly important. Among other concepts, new biomimetic molecules form the basis for the investigation of innovative host-guest relationships for anthropogenic stressors in the environment and their implementation in technical processes.


Subject(s)
Environmental Monitoring , Plastics/isolation & purification , Water Pollutants, Chemical/isolation & purification , Biomimetic Materials , Environmental Pollution , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...