Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nat Commun ; 15(1): 5291, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987547

ABSTRACT

Resistance to immune checkpoint therapy (ICT) presents a growing clinical challenge. The tumor microenvironment (TME) and its components, namely tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), play a pivotal role in ICT resistance; however, the underlying mechanisms remain under investigation. In this study, we identify expression of TNF-Stimulated Factor 6 (TSG-6) in ICT-resistant pancreatic tumors, compared to ICT-sensitive melanoma tumors, both in mouse and human. TSG-6 is expressed by CAFs within the TME, where suppressive macrophages expressing Arg1, Mafb, and Mrc1, along with TSG-6 ligand Cd44, predominate. Furthermore, TSG-6 expressing CAFs co-localize with the CD44 expressing macrophages in the TME. TSG-6 inhibition in combination with ICT improves therapy response and survival in pancreatic tumor-bearing mice by reducing macrophages expressing immunosuppressive phenotypes and increasing CD8 T cells. Overall, our findings propose TSG-6 as a therapeutic target to enhance ICT response in non-responsive tumors.


Subject(s)
Cancer-Associated Fibroblasts , Cell Adhesion Molecules , Immune Checkpoint Inhibitors , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Humans , Tumor Microenvironment/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Myeloid Cells/metabolism , Myeloid Cells/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mice, Inbred C57BL , Female , Drug Resistance, Neoplasm , Macrophages/immunology , Macrophages/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
2.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195004, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38008244

ABSTRACT

Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Leukemia, Myeloid, Acute , Animals , Mice , Humans , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/metabolism , Heterogeneous-Nuclear Ribonucleoproteins , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism
3.
Cell ; 186(8): 1652-1669, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059068

ABSTRACT

Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.


Subject(s)
Immunotherapy , Neoplasms , Humans , B7-H1 Antigen , Neoplasms/drug therapy , Clinical Trials as Topic , Immune Checkpoint Inhibitors/administration & dosage
4.
Cancer ; 129(4): 531-540, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36477735

ABSTRACT

BACKGROUND: A recent breakthrough therapy combining the BCL-2 inhibitor venetoclax with hypomethylating agents (HMAs) targeting DNA methyltransferase has improved outcomes for patients with acute myeloid leukemia (AML), but the responses and long-term survival in older/unfit patients and in patients with relapsed/refractory AML remain suboptimal. Recent studies showed that inhibition of BCL-2 or DNA methyltransferase modulates AML T-cell immunity. METHODS: By using flow cytometry and time-of-flight mass cytometry, the authors examined the effects of the HMA decitabine combined with the BCL-2 inhibitor venetoclax (DAC/VEN therapy) on leukemia cells and T cells in patients with AML who received DAC/VEN therapy in a clinical trial. The authors investigated the response of programmed cell death protein 1 (PD-1) inhibition in the DAC/VEN-treated samples in vitro and investigated the triple combination of PD-1 inhibition with HMA/venetoclax in the trial patients who had AML. RESULTS: DAC/VEN therapy effectively targeted leukemia cells and upregulated the expression of the immune checkpoint-inhibitory receptor PD-1 in T cells while preserving CD4-positive and CD8-positive memory T cells in a subset of patients with AML who were tested. In vitro PD-1 inhibition potentiated the antileukemia response in DAC/VEN-treated AML samples. The combined use of azacitidine, venetoclax, and nivolumab eliminated circulating blasts and leukemia stem cells/progenitor cells and expanded the percentage of CD8-positive memory T cells in an illustrative patient with relapsed AML who responded to the regimen in an ongoing clinical trial. CONCLUSIONS: Immunomodulation by targeting PD-1 enhances the therapeutic effect of combining an HMA and venetoclax in patients with AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Aged , Methyltransferases , Programmed Cell Death 1 Receptor/therapeutic use , Antineoplastic Agents/therapeutic use , DNA Modification Methylases , Proto-Oncogene Proteins c-bcl-2/genetics , DNA/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
5.
NAR Cancer ; 4(4): zcac039, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36518526

ABSTRACT

Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1-a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K's oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity.

6.
Nat Commun ; 13(1): 2801, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589701

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Glutamine/metabolism , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor, Notch1/metabolism , T-Lymphocytes/metabolism
7.
Antioxidants (Basel) ; 11(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35453402

ABSTRACT

Acute myeloid leukemia (AML) is a molecularly heterogenous hematological malignancy, with one of the most common mutations being internal tandem duplication (ITD) of the juxtamembrane domain of the fms-like tyrosine kinase receptor-3 (FLT3). Despite the development of FLT3-directed tyrosine kinase inhibitors (TKI), relapse and resistance are problematic, requiring improved strategies. In both patient samples and cell lines, FLT3-ITD raises levels of reactive oxygen species (ROS) and elicits an antioxidant response which is linked to chemoresistance broadly in AML. NF-E2-related factor 2 (NRF2) is a transcription factor regulating the antioxidant response including heme oxygenase -1 (HO-1), a heat shock protein implicated in AML resistance. Here, we demonstrate that HO-1 is elevated in FLT3-ITD-bearing cells compared to FLT3-wild type (WT). Transient knockdown or inhibitor-based suppression of HO-1 enhances vulnerability to the TKI, quizartinib, in both TKI-resistant and sensitive primary AML and cell line models. NRF2 suppression (genetically or pharmacologically using brusatol) results in decreased HO-1, suggesting that TKI-resistance is dependent on an active NRF2-driven pathway. In AML-patient derived xenograft (PDX) models, brusatol, in combination with daunorubicin, reduces leukemia burden and prolongs survival. Cumulatively, these data encourage further development of brusatol and NRF2 inhibition as components of combination therapy for refractory AML.

8.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34326171

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) stem cells (LSCs) are capable of surviving current standard chemotherapy and are the likely source of deadly, relapsed disease. While stem cell transplant serves as proof-of-principle that AML LSCs can be eliminated by the immune system, the translation of existing immunotherapies to AML has been met with limited success. Consequently, understanding and exploiting the unique immune-evasive mechanisms of AML LSCs is critical. METHODS: Analysis of stem cell datasets and primary patient samples revealed CD200 as a putative stem cell-specific immune checkpoint overexpressed in AML LSCs. Isogenic cell line models of CD200 expression were employed to characterize the interaction of CD200+ AML with various immune cell subsets both in vitro and in peripheral blood mononuclear cell (PBMC)-humanized mouse models. CyTOF and RNA-sequencing were performed on humanized mice to identify novel mechanisms of CD200-mediated immunosuppression. To clinically translate these findings, we developed a fully humanized CD200 antibody (IgG1) that removed the immunosuppressive signal by blocking interaction with the CD200 receptor while also inducing a potent Fc-mediated response. Therapeutic efficacy of the CD200 antibody was evaluated using both humanized mice and patient-derived xenograft models. RESULTS: Our results demonstrate that CD200 is selectively overexpressed in AML LSCs and is broadly immunosuppressive by impairing cytokine secretion in both innate and adaptive immune cell subsets. In a PBMC-humanized mouse model, CD200+ leukemia progressed rapidly, escaping elimination by T cells, compared with CD200- AML. T cells from mice with CD200+ AML were characterized by an abundance of metabolically quiescent CD8+ central and effector memory cells. Mechanistically, CD200 expression on AML cells significantly impaired OXPHOS metabolic activity in T cells from healthy donors. Importantly, CD200 antibody therapy could eliminate disease in the presence of graft-versus-leukemia in immune competent mice and could significantly improve the efficacy of low-intensity azacitidine/venetoclax chemotherapy in immunodeficient hosts. CONCLUSIONS: Overexpression of CD200 is a stem cell-specific marker that contributes to immunosuppression in AML by impairing effector cell metabolism and function. CD200 antibody therapy is capable of simultaneously reducing CD200-mediated suppression while also engaging macrophage activity. This study lays the groundwork for CD200-targeted therapeutic strategies to eliminate LSCs and prevent AML relapse.


Subject(s)
Antigens, CD/metabolism , Immune Evasion/genetics , Leukemia, Myeloid, Acute/genetics , Animals , Humans , Mice , Mice, Inbred NOD
9.
Cancer ; 127(20): 3761-3771, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34171128

ABSTRACT

BACKGROUND: Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have limited treatment options. In preclinical models of AML, inhibition of the PD-1/PD-L1 axis demonstrated antileukemic activity. Avelumab is an anti-PD-L1 immune checkpoint inhibitor (ICI) approved in multiple solid tumors. The authors conducted a phase 1b/2 clinical trial to assess the safety and efficacy of azacitidine with avelumab in patients with R/R AML. METHODS: Patients aged ≥18 years who had R/R AML received azacitidine 75 mg/m2 on days 1 through 7 and avelumab on days 1 and 14 of 28-day cycles. RESULTS: Nineteen patients were treated. The median age was 66 years (range, 22-83 years), 100% had European LeukemiaNet 2017 adverse-risk disease, and 63% had prior exposure to a hypomethylating agent. Avelumab was dosed at 3 mg/kg for the first 7 patients and at 10 mg/kg for the subsequent 12 patients. The most common grade ≥3 treatment-related adverse events were neutropenia and anemia in 2 patients each. Two patients experienced immune-related adverse events of grade 2 and grade 3 pneumonitis, respectively. The overall complete remission rate was 10.5%, and both were complete remission with residual thrombocytopenia. The median overall survival was 4.8 months. Bone marrow blasts were analyzed for immune-related markers by mass cytometry and demonstrated significantly higher expression of PD-L2 compared with PD-L1 both pretherapy and at all time points during therapy, with increasing PD-L2 expression on therapy. CONCLUSIONS: Although the combination of azacitidine and avelumab was well tolerated, clinical activity was limited. High expression of PD-L2 on bone marrow blasts may be an important mechanism of resistance to anti-PD-L1 therapy in AML. LAY SUMMARY: This report describes the results of a phase 1b/2 study of azacitidine with the anti-PD-L1 immune checkpoint inhibitor avelumab for patients with relapsed/refractory acute myeloid leukemia (AML). The clinical activity of the combination therapy was modest, with an overall response rate of 10.5%. However, mass cytometry analysis revealed significantly higher expression of PD-L2 compared with PD-L1 on AML blasts from all patients who were analyzed at all time points. These data suggest a novel potential role for PD-L2 as a means of AML immune escape.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Azacitidine/adverse effects , B7-H1 Antigen , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Middle Aged , Young Adult
11.
Mol Cancer Ther ; 18(9): 1615-1627, 2019 09.
Article in English | MEDLINE | ID: mdl-31227645

ABSTRACT

In B-cell acute lymphoblastic leukemia (B-ALL), activation of Notch signaling leads to cell-cycle arrest and apoptosis. We aimed to harness knowledge acquired by understanding a mechanism of Notch-induced cell death to elucidate a therapeutically viable target in B-ALL. To this end, we identified that Notch activation suppresses Polo-like kinase 1 (PLK1) in a B-ALL-specific manner. We identified that PLK1 is expressed in all subsets of B-ALL and is highest in Philadelphia-like (Ph-like) ALL, a high-risk subtype of disease. We biochemically delineated a mechanism of Notch-induced PLK1 downregulation that elucidated stark regulation of p53 in this setting. Our findings identified a novel posttranslational cascade initiated by Notch in which CHFR was activated via PARP1-mediated PARylation, resulting in ubiquitination and degradation of PLK1. This led to hypophosphorylation of MDM2Ser260, culminating in p53 stabilization and upregulation of BAX. shRNA knockdown or pharmacologic inhibition of PLK1 using BI2536 or BI6727 (volasertib) in B-ALL cell lines and patient samples led to p53 stabilization and cell death. These effects were seen in primary human B-ALL samples in vitro and in patient-derived xenograft models in vivo These results highlight PLK1 as a viable therapeutic target in B-ALL. Efficacy of clinically relevant PLK1 inhibitors in B-ALL patient-derived xenograft mouse models suggests that use of these agents may be tailored as an additional therapeutic strategy in future clinical studies.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Receptors, Notch/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Oncogenes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , Xenograft Model Antitumor Assays/methods , Polo-Like Kinase 1
12.
EBioMedicine ; 43: 127-137, 2019 May.
Article in English | MEDLINE | ID: mdl-31056473

ABSTRACT

BACKGROUND: Investigations into the function of non-promoter DNA methylation have yielded new insights into the epigenetic regulation of gene expression. However, integrated genome-wide non-promoter DNA methylation and gene expression analyses across a wide number of tumour types and corresponding normal tissues have not been performed. METHODS: To investigate the impact of non-promoter DNA methylation on cancer pathogenesis, we performed a large-scale analysis of gene expression and DNA methylation profiles, finding enrichment in the 3'UTR DNA methylation positively correlated with gene expression. Filtering for genes in which 3'UTR DNA methylation strongly correlated with gene expression yielded a list of genes enriched for functions involving T cell activation. FINDINGS: The important immune checkpoint gene Havcr2 showed a substantial increase in 3'UTR DNA methylation upon T cell activation and subsequent upregulation of gene expression in mice. Furthermore, this increase in Havcr2 gene expression was abrogated by treatment with decitabine. INTERPRETATION: These findings indicate that the 3'UTR is a functionally relevant DNA methylation site. Additionally, we show a potential novel mechanism of HAVCR2 regulation in T cells, providing new insights for modulating immune checkpoint blockade.


Subject(s)
3' Untranslated Regions , DNA Methylation , Gene Expression Regulation, Neoplastic , Genomics , Neoplasms/genetics , T-Lymphocytes/metabolism , Animals , Biomarkers, Tumor , Computational Biology/methods , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Databases, Genetic , Epigenesis, Genetic , Female , Flow Cytometry , Gene Expression , Gene Expression Profiling , Gene Knockdown Techniques , Genomics/methods , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Lymphocyte Activation/immunology , Mice , Neoplasms/immunology , Neoplasms/mortality , Prognosis , T-Lymphocytes/immunology
14.
Oncotarget ; 9(53): 30092-30105, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-30046390

ABSTRACT

Tropomyosin-related kinase A (TRKA) translocations have oncogenic potential and have been found in rare cases of solid tumors. Accumulating evidence indicates that TRKA and its ligand, nerve growth factor (NGF), may play a role in normal hematopoiesis and may be deregulated in leukemogenesis. Here, we report a comprehensive evaluation of TRKA signaling in normal and leukemic cells. TRKA expression is highest in common myeloid progenitors and is overexpressed in core binding factor and megakaryocytic leukemias, especially Down syndrome-related AML. Importantly, NGF can rescue GM-CSF dependent TF-1 AML cells, but does not drive proliferation in other TRKA-expressing lines. Although TRKA expression is heterogeneous between and within AML samples, NGF stimulation broadly induces ERK signaling, demonstrating the functional ability of AML cells to respond to NGF/TRKA signaling. However, neither shRNA knockdown nor pharmacologic inhibition have significant anti-proliferative effects on human AML cells in vitro and in vivo. Thus, despite functional NGF/TRKA signaling, the importance of TRKA in AML remains unclear.

15.
Oncotarget ; 8(49): 86657-86670, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156825

ABSTRACT

Selectins and their ligands have been implicated in tumor growth and progression in carcinomas, but their role in neuroblastoma has not been systematically examined. In the current study we evaluated L-, P- and E-selectin binding to neuroblastoma cells and the expression of some of their known ligands, namely CD44, CD24 and P-selectin glycoprotein ligand-1 (PSGL-1). Genetic loss of PSGL-1 or CD24 and pharmacological inhibition of P-selectin reduced P-selectin binding to neuroblastoma cells in vitro. Targeting P-selectin using specific antibodies promoted a significant reduction in the growth of neuroblastoma tumors in vivo. In mechanistic studies binding of P-selectin to neuroblastoma cells activated Src and several other pro-survival kinases such as ERK1, AKT, FAK and p38. Interestingly, comparative mass single cell cytometry (CyTOF) analyses revealed considerable intra- and inter-cell line heterogeneity with respect to response to P-selectin binding. Additionally, the downstream response to all selectins showed general similarity. Our findings reported here not only provide pre-clinical evidence in support of therapeutic targeting of P-selectin, but also highlight the heterogeneity in response of tumor cells to P-selectin binding. These observations provide the basis for combining P-selectin inhibition with other targeted therapies for neuroblastoma.

16.
JAMA Oncol ; 3(4): 509-515, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27893038

ABSTRACT

IMPORTANCE: Triple-negative breast cancer (TNBC) classified by transcriptional profiling as the mesenchymal subtype frequently harbors aberrations in the phosphoinositide 3-kinase (PI3K) pathway, raising the possibility of targeting this pathway to enhance chemotherapy response. Up to 30% of mesenchymal TNBC can be classified histologically as metaplastic breast cancer, a chemorefractory group of tumors with a mixture of epithelial and mesenchymal components identifiable by light microscopy. While assays to identify mesenchymal TNBC are under development, metaplastic breast cancer serves as a clinically identifiable surrogate to evaluate potential regimens for mesenchymal TNBC. OBJECTIVE: To assess safety and efficacy of mammalian target of rapamycin (mTOR) inhibition in combination with liposomal doxorubicin and bevacizumab in patients with advanced metaplastic TNBC. DESIGN, SETTING, AND PARTICIPANTS: Phase 1 study with dose escalation and dose expansion at the University of Texas MD Anderson Cancer Center of patients with advanced metaplastic TNBC. Patients were enrolled from April 16, 2009, to November 4, 2014, and followed for outcomes with a cutoff date of November 1, 2015, for data analysis. INTERVENTIONS: Liposomal doxorubicin, bevacizumab, and the mTOR inhibitors temsirolimus or everolimus using 21-day cycles. MAIN OUTCOMES AND MEASURES: Safety and response. When available, archived tissue was evaluated for aberrations in the PI3K pathway. RESULTS: Fifty-two women with metaplastic TNBC (median age, 58 years; range, 37-79 years) were treated with liposomal doxorubicin, bevacizumab, and temsirolimus (DAT) (N = 39) or liposomal doxorubicin, bevacizumab, and everolimus (DAE) (N = 13). The objective response rate was 21% (complete response = 4 [8%]; partial response = 7 [13%]) and 10 (19%) patients had stable disease for at least 6 months, for a clinical benefit rate of 40%. Tissue was available for testing in 43 patients, and 32 (74%) had a PI3K pathway aberration. Presence of PI3K pathway aberration was associated with a significant improvement in objective response rate (31% vs 0%; P = .04) but not clinical benefit rate (44% vs 45%; P > .99). CONCLUSIONS AND RELEVANCE: Using metaplastic TNBC as a surrogate for mesenchymal TNBC, DAT and DAE had notable activity in mesenchymal TNBC. Objective response was limited to patients with PI3K pathway aberration. A randomized trial should be performed to test DAT and DAE for metaplastic TNBC, as well as nonmetaplastic, mesenchymal TNBC, especially when PI3K pathway aberrations are identified.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/administration & dosage , Doxorubicin/analogs & derivatives , Triple Negative Breast Neoplasms/drug therapy , Adult , Aged , Bevacizumab/adverse effects , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Elafin/metabolism , Everolimus/administration & dosage , Everolimus/adverse effects , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Proportional Hazards Models , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Sirolimus/administration & dosage , Sirolimus/adverse effects , Sirolimus/analogs & derivatives , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/pathology
17.
Nat Commun ; 7: 11169, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27041221

ABSTRACT

A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.


Subject(s)
Early Growth Response Protein 1/physiology , Gene Regulatory Networks , Homeodomain Proteins/physiology , Kidney Neoplasms/genetics , MicroRNAs/physiology , Neovascularization, Pathologic/genetics , Ovarian Neoplasms/genetics , Animals , Cell Line, Tumor , Down-Regulation , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Female , Genetic Therapy , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kidney Neoplasms/blood supply , Kidney Neoplasms/therapy , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/therapy , Phosphatidylcholines , Tumor Burden
18.
Oncotarget ; 6(24): 20099-110, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26015395

ABSTRACT

PURPOSE: We determined the frequency of recurrent hotspot mutations in 46 cancer-related genes across tumor histologies in patients with advanced cancer. METHODS: We reviewed data from 500 consecutive patients who underwent genomic profiling on an IRB-approved prospective clinical protocol in the Phase I program at the MD Anderson Cancer Center. Archival tumor DNA was tested for 740 hotspot mutations in 46 genes (Ampli-Seq Cancer Panel; Life Technologies, CA). RESULTS: Of the 500 patients, 362 had at least one reported mutation/variant. The most common likely somatic mutations were within TP53 (36%), KRAS (11%), and PIK3CA (9%) genes. Sarcoma (20%) and kidney (30%) had the lowest proportion of likely somatic mutations detected, while pancreas (100%), colorectal (89%), melanoma (86%), and endometrial (75%) had the highest. There was high concordance in 62 patients with paired primary tumors and metastases analyzed. 151 (30%) patients had alterations in potentially actionable genes. 37 tumor types were enrolled; both rare actionable mutations in common tumor types and actionable mutations in rare tumor types were identified. CONCLUSION: Multiplex testing in the CLIA environment facilitates genomic characterization across multiple tumor lineages and identification of novel opportunities for genotype-driven trials.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasms/genetics , Humans , Precision Medicine/methods
19.
Mol Oncol ; 8(8): 1429-40, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24974076

ABSTRACT

Tumor cells have unstable genomes relative to non-tumor cells. Decreased DNA integrity resulting from tumor cell instability is important in generating favorable therapeutic indices, and intact DNA repair mediates resistance to therapy. Targeting DNA repair to promote the action of anti-cancer agents is therefore an attractive therapeutic strategy. BRCA2 is involved in homologous recombination repair. BRCA2 defects increase cancer risk but, paradoxically, cancer patients with BRCA2 mutations have better survival rates. We queried TCGA data and found that BRCA2 alterations led to increased survival in patients with ovarian and endometrial cancer. We developed a BRCA2-targeting second-generation antisense oligonucleotide (ASO), which sensitized human lung, ovarian, and breast cancer cells to cisplatin by as much as 60%. BRCA2 ASO treatment overcame acquired cisplatin resistance in head and neck cancer cells, but induced minimal cisplatin sensitivity in non-tumor cells. BRCA2 ASO plus cisplatin reduced respiration as an early event preceding cell death, concurrent with increased glucose uptake without a difference in glycolysis. BRCA2 ASO and cisplatin decreased metastatic frequency in vivo by 77%. These results implicate BRCA2 as a regulator of metastatic frequency and cellular metabolic response following cisplatin treatment. BRCA2 ASO, in combination with cisplatin, is a potential therapeutic anti-cancer agent.


Subject(s)
BRCA2 Protein/metabolism , Cisplatin/pharmacology , Animals , BRCA2 Protein/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Chick Embryo , Humans , Neoplasm Metastasis/genetics , Oligoribonucleotides, Antisense/pharmacology , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
20.
Clin Cancer Res ; 20(12): 3280-8, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24756370

ABSTRACT

PURPOSE: Residual disease following primary cytoreduction is associated with adverse overall survival in patients with epithelial ovarian cancer. Accurate identification of patients at high risk of residual disease has been elusive, lacking external validity and prompting many to undergo unnecessary surgical exploration. Our goal was to identify and validate molecular markers associated with high rates of residual disease. METHODS: We interrogated two publicly available datasets from chemonaïve primary high-grade serous ovarian tumors for genes overexpressed in patients with residual disease and significant at a 10% false discovery rate (FDR) in both datasets. We selected genes with wide dynamic range for validation in an independent cohort using quantitative RT-PCR to assay gene expression, followed by blinded prediction of a patient subset at high risk for residual disease. Predictive success was evaluated using a one-sided Fisher exact test. RESULTS: Forty-seven probe sets met the 10% FDR criterion in both datasets. These included FABP4 and ADH1B, which tracked tightly, showed dynamic ranges >16-fold and had high expression levels associated with increased incidence of residual disease. In the validation cohort (n = 139), FABP4 and ADH1B were again highly correlated. Using the top quartile of FABP4 PCR values as a prespecified threshold, we found 30 of 35 cases of residual disease in the predicted high-risk group (positive predictive value = 86%) and 54 of 104 among the remaining patients (P = 0.0002; OR, 5.5). CONCLUSION: High FABP4 and ADH1B expression is associated with significantly higher risk of residual disease in high-grade serous ovarian cancer. Patients with high tumoral levels of these genes may be candidates for neoadjuvant chemotherapy.


Subject(s)
Alcohol Dehydrogenase/genetics , Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/genetics , Cytoreduction Surgical Procedures , Fatty Acid-Binding Proteins/genetics , Neoplasm, Residual/genetics , Ovarian Neoplasms/genetics , Cohort Studies , Cystadenocarcinoma, Serous/mortality , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/surgery , Female , Follow-Up Studies , Humans , Neoplasm Grading , Neoplasm, Residual/mortality , Neoplasm, Residual/pathology , Neoplasm, Residual/surgery , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovarian Neoplasms/surgery , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...