Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 611(7935): 326-331, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36174646

ABSTRACT

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Subject(s)
Bacteria , Bacteriophages , Protein Domains , Receptors, Interleukin-1 , Signal Transduction , Toll-Like Receptors , Viral Proteins , Bacteria/immunology , Bacteria/metabolism , Bacteria/virology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/chemistry , Plant Proteins/immunology , Plant Proteins/metabolism , Receptors, Interleukin-1/chemistry , Signal Transduction/immunology , Bacteriophages/chemistry , Bacteriophages/immunology , Bacteriophages/metabolism , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Proteins/metabolism , Toll-Like Receptors/chemistry , Crystallography, X-Ray
2.
Nature ; 600(7887): 116-120, 2021 12.
Article in English | MEDLINE | ID: mdl-34853457

ABSTRACT

The Toll/interleukin-1 receptor (TIR) domain is a canonical component of animal and plant immune systems1,2. In plants, intracellular pathogen sensing by immune receptors triggers their TIR domains to generate a molecule that is a variant of cyclic ADP-ribose3,4. This molecule is hypothesized to mediate plant cell death through a pathway that has yet to be resolved5. TIR domains have also been shown to be involved in a bacterial anti-phage defence system called Thoeris6, but the mechanism of Thoeris defence remained unknown. Here we show that phage infection triggers Thoeris TIR-domain proteins to produce an isomer of cyclic ADP-ribose. This molecular signal activates a second protein, ThsA, which then depletes the cell of the essential molecule nicotinamide adenine dinucleotide (NAD) and leads to abortive infection and cell death. We also show that, similar to eukaryotic innate immune systems, bacterial TIR-domain proteins determine the immunological specificity to the invading pathogen. Our results describe an antiviral signalling pathway in bacteria, and suggest that the generation of intracellular signalling molecules is an ancient immunological function of TIR domains that is conserved in both plant and bacterial immunity.


Subject(s)
Bacillus/immunology , Bacillus/virology , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacteriophages/immunology , Receptors, Interleukin-1/chemistry , Signal Transduction/immunology , Toll-Like Receptors/chemistry , Cyclic ADP-Ribose/analogs & derivatives , Cyclic ADP-Ribose/metabolism , Evolution, Molecular , Models, Molecular , NAD/metabolism , Protein Domains , Substrate Specificity/immunology
3.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34644530

ABSTRACT

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Subject(s)
Bacteria/immunology , Bacteria/virology , Bacteriophages/physiology , Cyclic CMP/metabolism , Nucleotides, Cyclic/metabolism , Uridine Monophosphate/metabolism , Amino Acid Sequence , Bacteria/genetics , Burkholderia/enzymology , Cyclic CMP/chemistry , Cyclization , Escherichia coli/enzymology , Models, Molecular , Mutation/genetics , Nucleotides, Cyclic/chemistry , Phosphorus-Oxygen Lyases/chemistry , Phosphorus-Oxygen Lyases/metabolism , Pyrimidines/metabolism , Uridine Monophosphate/chemistry
4.
ACS Chem Biol ; 16(8): 1425-1434, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34269557

ABSTRACT

Developing treatments for antibiotic resistant bacterial infections is among the highest priority public health challenges worldwide. Tetracyclines, one of the most important classes of antibiotics, have fallen prey to antibiotic resistance, necessitating the generation of new analogs. Many tetracycline analogs have been accessed through both total synthesis and semisynthesis, but key C-ring tetracycline analogs remain inaccessible. New methods are needed to unlock access to these analogs, and heterologous biosynthesis in a tractable host such as Saccharomyces cerevisiae is a candidate method. C-ring analog biosynthesis can mimic nature's biosynthesis of tetracyclines from anhydrotetracyclines, but challenges exist, including the absence of the unique cofactor F420 in common heterologous hosts. Toward this goal, this paper describes the biosynthesis of tetracycline from anhydrotetracycline in S. cerevisiae heterologously expressing three enzymes from three bacterial hosts: the anhydrotetracycline hydroxylase OxyS, the dehydrotetracycline reductase CtcM, and the F420 reductase FNO. This biosynthesis of tetracycline is enabled by OxyS performing just one hydroxylation step in S. cerevisiae despite its previous characterization as a double hydroxylase. This single hydroxylation enabled us to purify and structurally characterize a hypothetical intermediate in oxytetracycline biosynthesis that can explain structural differences between oxytetracycline and chlortetracycline. We show that Fo, a synthetically accessible derivative of cofactor F420, can replace F420 in tetracycline biosynthesis. Critically, the use of S. cerevisiae for the final steps of tetracycline biosynthesis described herein sets the stage to achieve a total biosynthesis of tetracycline as well as novel tetracycline analogs in S. cerevisiae with the potential to combat antibiotic-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Saccharomyces cerevisiae/metabolism , Tetracycline/biosynthesis , Alcohol Oxidoreductases/metabolism , Fungal Proteins/metabolism , Hydroxylation , Mixed Function Oxygenases/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/enzymology , Tetracyclines/chemistry , Tetracyclines/metabolism
5.
Biochemistry ; 57(31): 4726-4734, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29956923

ABSTRACT

Metabolic engineering stands to transform the discovery and production of a wide range of chemicals, but metabolic engineering currently demands considerable resource investments that restrict commercial application. To facilitate the applicability of metabolic engineering, general high-throughput and readily implemented technologies are needed to assay vast libraries of strains producing desirable chemicals. Toward this end, we describe here the development of a yeast three hybrid (Y3H) assay as a general, high-throughput, versatile and readily implemented approach for the detection of target molecule biosynthesis. Our system detects target molecule biosynthesis through a change in reporter gene transcription that results from the binding of the target molecule to a modular protein receptor. We demonstrate the use of the Y3H assay for detecting the biosynthesis of tetracyclines, a major class of antibiotics, based on the interaction between tetracyclines and the tetracycline repressor protein (TetR). Various tetracycline derivatives can be detected using our assay, whose versatility enables its use both as a screen and a selection to match the needs and instrumentation of a wide range of end users. We demonstrate the applicability of the Y3H assay to metabolic engineering by differentiating between producer and nonproducer strains of the natural product tetracycline TAN-1612. The Y3H assay is superior to state-of-the-art HPLC-MS methods in throughput and limit of detection of tetracycline derivatives. Finally, our establishment of the Y3H assay for detecting the biosynthesis of a tetracycline supports the generality of the Y3H assay for detecting the biosynthesis of many other target molecules.


Subject(s)
Metabolic Engineering/methods , Protein Interaction Mapping/methods , Tetracyclines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...