Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(18): 13205-13246, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37712656

ABSTRACT

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.

2.
Bioanalysis ; 15(11): 637-651, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37170582

ABSTRACT

Background: Dysregulation of the kynurenine metabolic pathway has been reported in several neurological conditions. Methods & results: Sensitive and selective LC-MS/MS methods have been validated for six kynurenine pathway metabolites in human cerebrospinal fluid and plasma. For each matrix, we validated three methods - one for the simultaneous determination of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (four-analyte assay), one for quinolinic acid and one for tryptophan - using stable-isotopically labeled internal standards. The dynamic range and quantitation limits were based on endogenous concentrations for each analyte. Conclusion: The use of validated methods for kynurenine pathway metabolites in human cerebrospinal fluid and plasma will provide definitive information in neurological diseases.


Subject(s)
Kynurenine , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Tryptophan , Plasma/metabolism , Quinolinic Acid/cerebrospinal fluid
3.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36548390

ABSTRACT

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Subject(s)
Huntington Disease , Positron-Emission Tomography , Animals , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Ligands , Positron-Emission Tomography/methods , Huntington Disease/diagnostic imaging , Huntington Disease/drug therapy , Brain/diagnostic imaging , Brain/metabolism
4.
Xenobiotica ; 51(10): 1155-1180, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34496722

ABSTRACT

The disposition of a novel kynurenine monooxygenase inhibitor, CHDI-340246, was investigated in vitro and in animals.In vitro, there was minimal metabolic turnover of CHDI-340246 in all species. The protein binding was higher in human plasma (99.7%) relative to other species.In all species, blood clearance was low (<20% of liver blood flow) and volume of distribution was small (<0.5 L/kg). The terminal half-life was longer in monkeys (9 hr) than in mice, rats, or dogs (1-2 hr). CHDI-340246 was orally bioavailable (>60%) in all species.In rats, [14C]CHDI-340246 showed wide distribution of radioactivity in all tissues except brain and testes. In rats, the parent drug was the major circulating moiety with minor amounts of a sulphate conjugate of an O-dealkylated metabolite. The elimination occurred via the urinary route and to a lesser extent by biliary route, but mostly as metabolites. In cynomolgus monkeys, the parent drug predominated in plasma with only trace amounts of metabolites detected.Acyl glucuronide conjugate of CHDI-340246 was not detected in plasma of rats or monkeys.Overall, the ADME profile of CHDI-340246 was favourable in rats and monkeys for potential evaluation of KMO inhibition in humans.


Subject(s)
Kynurenine , Pyrimidines , Animals , Animals, Laboratory , Dogs , Mice , Mixed Function Oxygenases , Rats , Species Specificity
5.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34351166

ABSTRACT

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Subject(s)
Brain/diagnostic imaging , Heterocyclic Compounds, 3-Ring/chemistry , Huntingtin Protein/metabolism , Protein Aggregates/physiology , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Alzheimer Disease , Animals , Biomarkers/metabolism , Brain/metabolism , Carbon Radioisotopes/chemistry , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Molecular Structure , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
6.
J Med Chem ; 63(15): 8608-8633, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32662649

ABSTRACT

Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.


Subject(s)
Huntingtin Protein/analysis , Huntington Disease/diagnostic imaging , Positron-Emission Tomography/methods , Protein Aggregation, Pathological/diagnostic imaging , Animals , Disease Models, Animal , Dogs , Female , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Ligands , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mutation , Peptides/genetics , Protein Aggregation, Pathological/genetics , Radiopharmaceuticals/analysis , Rats, Sprague-Dawley
7.
Cells ; 9(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316221

ABSTRACT

The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ω∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).


Subject(s)
Biological Transport/drug effects , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Astrocytes/metabolism , Biological Transport/physiology , Brain/cytology , Cell Differentiation/physiology , Cells, Cultured , Central Nervous System/chemistry , Central Nervous System/metabolism , Cryopreservation/methods , Humans , Immunohistochemistry , Permeability , Swine
8.
Mol Pharm ; 16(5): 2069-2082, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30916978

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood-brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System Agents/therapeutic use , Drug Discovery/methods , Huntington Disease/drug therapy , Models, Biological , ATP-Binding Cassette Transporters/metabolism , Animals , Astrocytes/metabolism , Capillary Permeability/physiology , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Electric Impedance , Endothelial Cells/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Solute Carrier Proteins/metabolism , Swine , Tight Junctions/metabolism
9.
J Pharm Biomed Anal ; 107: 426-31, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25668794

ABSTRACT

Neuroactive metabolites in the kynurenine pathway of tryptophan catabolism are associated with neurodegenerative disorders. Tryptophan is transported across the blood-brain barrier and converted via the kynurenine pathway to N-formyl-L-kynurenine, which is further degraded to L-kynurenine. This metabolite can then generate a group of metabolites called kynurenines, most of which have neuroactive properties. The association of tryptophan catabolic pathway alterations with various central nervous system (CNS) pathologies has raised interest in analytical methods to accurately quantify kynurenines in body fluids. We here describe a rapid and sensitive reverse-phase HPLC-MS/MS method to quantify L-kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxy-L-kynurenine (3HK) and anthranilic acid (AA) in rat plasma. Our goal was to quantify these metabolites in a single run; given their different physico-chemical properties, major efforts were devoted to develop a chromatography suitable for all metabolites that involves plasma protein precipitation with acetonitrile followed by chromatographic separation by C18 RP chromatography, detected by electrospray mass spectrometry. Quantitation range was 0.098-100 ng/ml for 3HK, 9.8-20,000 ng/ml for KYN, 0.49-1000 ng/ml for KYNA and AA. The method was linear (r>0.9963) and validation parameters were within acceptance range (calibration standards and QC accuracy within ±30%).


Subject(s)
Blood-Brain Barrier/metabolism , Kynurenine/chemistry , Kynurenine/metabolism , Plasma/chemistry , Animals , Chromatography, High Pressure Liquid , Kynurenic Acid/blood , Kynurenic Acid/chemistry , Kynurenine/blood , Rats , Tryptophan/blood , Tryptophan/chemistry , ortho-Aminobenzoates/blood , ortho-Aminobenzoates/chemistry
10.
Bioorg Med Chem Lett ; 21(24): 7455-9, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22056742

ABSTRACT

AMPA receptors (AMPARs) are an important therapeutic target in the CNS. A series of substituted benzobistriazinone, benzobispyrimidinone and related derivatives have been prepared with high potency and selectivity for the allosteric binding site of AMPARs. Further improvements have been made to previously reported series of positive AMPAR modulators and these compounds exhibit excellent in vivo activity and improved in vivo metabolic stability with up to 100% oral bioavailability in rat.


Subject(s)
Heterocyclic Compounds/chemistry , Receptors, AMPA/chemistry , Triazines/chemistry , Administration, Oral , Allosteric Regulation , Animals , Binding Sites , Rats , Receptors, AMPA/metabolism , Triazines/chemical synthesis , Triazines/pharmacokinetics
11.
Bioorg Med Chem Lett ; 21(20): 6170-5, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21889339

ABSTRACT

AMPA receptors (AMPARs) have been demonstrated to be an important therapeutic CNS target. A series of substituted benzotriazinone and benzopyrimidinone derivatives were prepared with the aim to improve in vivo activity over the previously reported bis-benzoxazinone based AMPAKINE series from our laboratory. These compounds were shown to be potent, positive allosteric AMPAR modulators that have better in vivo activity and improved metabolic stability over the analogous benzoxazinone derivatives.


Subject(s)
Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Receptors, AMPA/metabolism , Triazines/chemistry , Triazines/pharmacology , Allosteric Regulation , Animals , Drug Design , Hippocampus/drug effects , Humans , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...