Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21249282

ABSTRACT

Early diagnosis of SARS-CoV-2 is essential to limiting the spread of the virus and managing infected patients during hospitalization. The sensitivity of RT-qPCR is contested by the fact that it is time-consuming, executed by trained technicians in proper environment for material extraction. Here, we evaluated the first SARS-CoV-2 antigen test recommended by the World Health Organization at September, 2020 as an alternative for immediate diagnosis of symptomatic and suspected patients at a hospital in Brazil during the epidemic peak. All patients were submitted to RT-qPCR and rapid antigen test using nasopharyngeal swabs rigorously collected at the same time. Demographics, baseline comorbidities, symptoms and outcomes were considered. Prediction analysis revealed that previous stroke, chronic obstructive pulmonary disease, desaturation and tachypnea were the most relevant determinants of the death of COVID-19 patients. Comparison between the rapid antigen test and RT-qPCR revealed an overall PPV of 97%, extended to 100% when performed between 4 and 15 days of symptoms, with an accuracy of 90-91% from days 1 to 7 and a Substantial agreement. The rapid antigen test presented no inconclusive result. Among the discordant results and RT-qPCR inconclusives, 72% presented bilateral multifocal ground-glass opacities on imaging and other exams alterations. The median time to obtain RT-qPCR results was 83.6 hours, against 15 minutes for the rapid test, precious time for deciding on patient isolation and management. Knowledge of the risk factors and a rapid diagnosis upon patient admission is critical to reduce mortality of COVID-19 patients, hospital internal costs and in-hospital transmission.

2.
J Neurophysiol ; 116(5): 2312-2330, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27535370

ABSTRACT

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Electrodes, Implanted , Nerve Net/physiology , Silicon , Thalamus/physiology , Acoustic Stimulation/methods , Animals , Female , Male , Mice , Mice, Transgenic , Optogenetics/methods , Rats , Rats, Wistar
3.
Biomed Tech (Berl) ; 59(4): 291-303, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24101367

ABSTRACT

Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.


Subject(s)
Brain/physiology , Electrodes, Implanted , Infusion Pumps, Implantable , Micro-Electrical-Mechanical Systems/instrumentation , Microelectrodes , Microinjections/instrumentation , Animals , Brain/surgery , Equipment Design , Humans , Miniaturization , Systems Integration
4.
J Biomed Mater Res B Appl Biomater ; 96(2): 369-75, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21210518

ABSTRACT

In this work, we propose the use of shape-memory polymer as an anchoring system for a bladder sensor. The anchoring system was designed from a biomedical biodegradable water-based poly(ester-urethane) produced in an aqueous environment by using isophorone diisocyanate/hydrazine (hard segment) and poly(caprolactone diol)/2,2-bis (hydroxymethyl) propionic acid (soft segment) as the main reagents. Tensile strength and elongation-at-break deterioration upon degradation in synthetic urine were investigated. In-body shape recovery was simulated and measured in synthetic urine. Results indicated that shape recovery can occur at body temperature and expulsion of the sensor by the body along with urine may occur through the combined effect of urine hydrolytic attack and compression exerted by the bladder walls.


Subject(s)
Biocompatible Materials/therapeutic use , Diagnostic Equipment , Electric Impedance/therapeutic use , Polyurethanes/therapeutic use , Urinary Bladder/physiology , Equipment Design , Materials Testing , Models, Biological , Temperature , Urine
7.
AORN J ; 48(2): 172, 174, 1988 Aug.
Article in English | MEDLINE | ID: mdl-3421683
8.
AORN J ; 47(6): 1352, 1354, 1988 Jun.
Article in English | MEDLINE | ID: mdl-3389773
11.
AORN J ; 38(6): 985-90, 1983 Dec.
Article in English | MEDLINE | ID: mdl-6197932
SELECTION OF CITATIONS
SEARCH DETAIL
...