Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Transl Med ; 6(6): 1522-1532, 2017 06.
Article in English | MEDLINE | ID: mdl-28481046

ABSTRACT

Engineered neural stem cells (NSCs) intrinsically migrating to brain tumors offer a promising mechanism for local therapeutic delivery. However, difficulties in quantitative assessments of NSC migration and in estimates of tumor coverage by diffusible therapeutics have impeded development and refinement of NSC-based therapies. To address this need, we developed techniques by which conventional serial-sectioned formalin-fixed paraffin-embedded (FFPE) brains can be analyzed in their entirety across multiple test animals. We considered a conventional human glioblastoma model: U251 glioma cells orthotopically engrafted in immunodeficient mice receiving intracerebral (i.c.) or intravenous (i.v.) administrations of NSCs expressing a diffusible enzyme to locally catalyze chemotherapeutic formation. NSC migration to tumor sites was dose-dependent, reaching 50%-60% of total administered NSCs for the i.c route and 1.5% for the i.v. route. Curiously, the most efficient NSC homing was seen with smaller NSC doses, implying existence of rate-limiting process active during administration and/or migration. Predicted tumor exposure to a diffusing therapeutic (assuming a 50 µm radius of action) could reach greater than 50% of the entire tumor volume for i.c. and 25% for i.v. administration. Within individual sections, coverage of tumor area could be as high as 100% for i.c. and 70% for i.v. routes. Greater estimated therapeutic coverage was observed for larger tumors and for larger tumor regions in individual sections. Overall, we have demonstrated a framework within which investigators may rationally evaluate NSC migration to, and integration into, brain tumors, and therefore enhance understanding of mechanisms that both promote and limit this therapeutic modality. Stem Cells Translational Medicine 2017;6:1522-1532.


Subject(s)
Brain Neoplasms/therapy , Cell Movement , Glioma/therapy , Neural Stem Cells/cytology , Stem Cell Transplantation/methods , Animals , Cell Line, Tumor , Humans , Mice , Mice, SCID , Neural Stem Cells/physiology , Neural Stem Cells/transplantation
2.
J Vis Exp ; (112)2016 06 10.
Article in English | MEDLINE | ID: mdl-27341536

ABSTRACT

This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy.


Subject(s)
Neural Stem Cells , Pluripotent Stem Cells , Cell Culture Techniques , Humans , Incubators , Laboratories , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...