Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730853

ABSTRACT

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Subject(s)
Genome, Protozoan , Life Cycle Stages/genetics , Liver/metabolism , Liver/parasitology , Plasmodium berghei/growth & development , Plasmodium berghei/genetics , Alleles , Amino Sugars/biosynthesis , Animals , Culicidae/parasitology , Erythrocytes/parasitology , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , Genotype , Models, Biological , Mutation/genetics , Parasites/genetics , Parasites/growth & development , Phenotype , Plasmodium berghei/metabolism , Ploidies , Reproduction
2.
Cell Rep ; 28(6): 1635-1647.e5, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31390575

ABSTRACT

Malaria represents a major global health issue, and the identification of new intervention targets remains an urgent priority. This search is hampered by more than one-third of the genes of malaria-causing Plasmodium parasites being uncharacterized. We report a large-scale protein interaction network in Plasmodium schizonts, generated by combining blue native-polyacrylamide electrophoresis with quantitative mass spectrometry and machine learning. This integrative approach, spanning 3 species, identifies >20,000 putative protein interactions, organized into 600 protein clusters. We validate selected interactions, assigning functions in chromatin regulation to previously unannotated proteins and suggesting a role for an EELM2 domain-containing protein and a putative microrchidia protein as mechanistic links between AP2-domain transcription factors and epigenetic regulation. Our interactome represents a high-confidence map of the native organization of core cellular processes in Plasmodium parasites. The network reveals putative functions for uncharacterized proteins, provides mechanistic and structural insight, and uncovers potential alternative therapeutic targets.


Subject(s)
Plasmodium/metabolism , Protozoan Proteins/metabolism , Animals , Electrophoresis, Polyacrylamide Gel , Female , Mice , Plasmodium/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protein Interaction Maps , Rats , Species Specificity , Tandem Mass Spectrometry
3.
PLoS One ; 13(3): e0193802, 2018.
Article in English | MEDLINE | ID: mdl-29543828

ABSTRACT

Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications.


Subject(s)
Liquid Biopsy/methods , Sequence Analysis, DNA/methods , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/blood , Cohort Studies , Humans , Mutation , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
4.
Genome Res ; 28(4): 547-560, 2018 04.
Article in English | MEDLINE | ID: mdl-29500236

ABSTRACT

Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.


Subject(s)
Malaria, Avian/genetics , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Plasmodium/genetics , Animals , Birds/parasitology , Evolution, Molecular , Humans , Malaria, Avian/parasitology , Mammals/parasitology , Phylogeny , Plasmodium/pathogenicity , Plasmodium falciparum/pathogenicity , Plasmodium vivax/pathogenicity
5.
Cell ; 170(2): 260-272.e8, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28708996

ABSTRACT

The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine.


Subject(s)
Genome, Protozoan , Plasmodium berghei/growth & development , Plasmodium berghei/genetics , Animals , Biological Evolution , Female , Gene Knockout Techniques , Genes, Essential , Host-Parasite Interactions , Metabolic Networks and Pathways , Mice , Mice, Inbred BALB C , Plasmodium berghei/metabolism , Saccharomyces cerevisiae/genetics , Toxoplasma/genetics , Trypanosoma brucei brucei/genetics
6.
Cell Host Microbe ; 17(3): 404-413, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25732065

ABSTRACT

The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vectors into the haploid blood stages creates complex pools of barcoded mutants, whose competitive fitness can be measured during infection of a single mouse using barcode sequencing (barseq). To validate the utility of this resource, we rescreen the P. berghei kinome, using published kinome screens for comparison. We find that several protein kinases function redundantly in asexual blood stages and confirm the targetability of kinases cdpk1, gsk3, tkl3, and PBANKA_082960 by genotyping cloned mutants. Thus, parallel phenotyping of barcoded mutants unlocks the power of reverse genetic screening for a malaria parasite and will enable the systematic identification of genes essential for in vivo parasite growth and transmission.


Subject(s)
Genetic Testing/methods , Genetic Vectors , Genetics, Microbial/methods , Plasmodium berghei/genetics , Reverse Genetics/methods , Animals , Malaria/parasitology , Malaria/veterinary , Mice , Plasmodium berghei/enzymology , Plasmodium berghei/physiology , Protein Kinases/genetics , Protein Kinases/metabolism
7.
Nucleic Acids Res ; 43(Database issue): D1176-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25593348

ABSTRACT

The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves.


Subject(s)
Databases, Genetic , Plasmodium berghei/genetics , Genetic Vectors , Genome, Protozoan , Genotype , High-Throughput Nucleotide Sequencing , Internet , Mutation , Plasmids , Plasmodium/genetics , Software
8.
Nature ; 496(7446): 494-7, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23594742

ABSTRACT

Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.


Subject(s)
Genome/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Alleles , Animals , Exome/genetics , Female , Gene Knockout Techniques , Genetic Complementation Test , Genomics , Male , Molecular Sequence Annotation , Mutagenesis , Mutation/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Zebrafish/physiology , Zebrafish Proteins/metabolism
9.
Nature ; 486(7402): 266-70, 2012 Apr 29.
Article in English | MEDLINE | ID: mdl-22699621

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.


Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Pancreatic Neoplasms/enzymology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Animals , Anoikis/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Endopeptidases , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , U937 Cells
10.
Brain ; 127(Pt 12): 2682-92, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15483044

ABSTRACT

The molecular basis of idiopathic generalized epilepsy remains poorly understood. Absence epilepsy with 3 Hz spike-wave EEG is one of the most common human epilepsies, and is associated with significant morbidity. Several spontaneously occurring genetic mouse models of absence epilepsy are caused by dysfunction of the P/Q-type voltage-gated calcium channel CaV2.1. Such mice exhibit a primary generalized spike-wave EEG, with frequencies in the range of 5-7 Hz, often associated with ataxia, evidence of cerebellar degeneration and abnormal posturing. Previously, we identified a single case of severe primary generalized epilepsy with ataxia associated with CaV2.1 dysfunction, suggesting a possible link between this channel and human absence epilepsy. We now report a family in which absence epilepsy segregates in an autosomal dominant fashion through three generations. Five members exhibit a combination of absence epilepsy (with 3 Hz spike-wave) and cerebellar ataxia. In patients with the absence epilepsy/ataxia phenotype, genetic marker analysis was consistent with linkage to the CACNA1A gene on chromosome 19, which encodes the main pore-forming alpha1A subunit of CaV2.1 channels (CaV2.1alpha1). DNA sequence analysis identified a novel point mutation resulting in a radical amino acid substitution (E147K) in CaV2.1alpha1, which segregated with the epilepsy/ataxia phenotype. Functional expression studies using human CACNA1A cDNA demonstrated that the E147K mutation results in impairment of calcium channel function. Impaired function of the brain calcium channel CaV2.1 may have a central role in the pathogenesis of certain cases of primary generalized epilepsy, particularly when associated with ataxia, which may be wrongly ascribed to anticonvulsant medication.


Subject(s)
Calcium Channels, N-Type/physiology , Cerebellar Ataxia/genetics , Epilepsy, Absence/genetics , Adult , Animals , Calcium Channels/genetics , Cerebellar Ataxia/complications , Cerebellar Ataxia/physiopathology , Electrophysiology , Epilepsy, Absence/complications , Epilepsy, Absence/physiopathology , Female , Genes, Dominant , Genetic Linkage , Humans , Male , Middle Aged , Oocytes/metabolism , Pedigree , Point Mutation , Sequence Analysis, DNA/methods , Xenopus laevis
11.
Eur J Neurosci ; 16(2): 186-96, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12169101

ABSTRACT

The human disease hyperekplexia is characterized by excessive startle reactions to auditory and cutaneous stimuli. In its familial form, hyperekplexia has been associated with both dominant and recessive mutations of the GLRA1 gene encoding the glycine receptor alpha1 subunit (GlyRalpha1), which mediates inhibitory transmission in the spinal cord and brainstem. Here we have examined the functional consequences of two amino acid substitutions found in a compound heterozygous family, R252H and R392H, to investigate the mechanisms determining this inheritance pattern. When expressed in Xenopus laevis oocytes, both mutations were non-functional. Neither mutant affected the electrophysiological properties of wild type GlyRalpha1 when co-expressed. We introduced a green fluorescent protein tag to mutant subunits and found that both mutant proteins were detectable. Evidence that subcellular localization differed from wild type was significant for one of the mutants. Thus, an effective loss of functional GlyRalpha1-mediated current underlies hyperekplexia in this family, whereas a partial loss is asymptomatic.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Brain Stem/metabolism , Mutation/genetics , Receptors, Glycine/genetics , Reflex, Startle/genetics , Spinal Cord/metabolism , Animals , Brain Diseases, Metabolic, Inborn/metabolism , Brain Diseases, Metabolic, Inborn/physiopathology , Brain Stem/physiopathology , Dose-Response Relationship, Drug , Female , Genotype , Glycine/metabolism , Glycine/pharmacology , Humans , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Neural Inhibition/genetics , Oocytes/cytology , Oocytes/drug effects , Oocytes/metabolism , Pedigree , Phenotype , RNA, Complementary/genetics , RNA, Complementary/pharmacology , Receptors, Glycine/metabolism , Spinal Cord/physiopathology , Synaptic Transmission/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...