Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 37(12): 2066-74, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22033132

ABSTRACT

Many quantitative ultrasound (QUS) techniques are based on estimates of the radio-frequency (RF) echo signal power spectrum. Historically, reliable spectral estimates required spatial averaging over large regions-of-interest (ROIs). Spatial compounding techniques have been used to obtain robust spectral estimates for data acquired over small regions of interest. A new technique referred to as "deformation compounding" is another method for providing robust spectral estimates over smaller regions of interest. Motion tracking software is used to follow an ROI while the tissue is deformed (typically by pressing with the transducer). The deformation spatially reorganizes the scatterers so that the resulting echo signal is decorrelated. The RF echo signal power spectrum for the ROI is then averaged over several frames of RF echo data as the tissue is deformed, thus, undergoing deformation compounding. More specifically, averaging spectral estimates among the uncorrelated RF data acquired following small deformations allows reduction in the variance of the power spectral density estimates and, thereby, improves accuracy of spectrum-based tissue property estimation. The viability of deformation compounding has been studied using phantoms with known attenuation and backscatter coefficients. Data from these phantoms demonstrates that a deformation of about 2% frame-to-frame average strain is sufficient to obtain statistically-independent echo signals (with correlations of less than 0.2). Averaging five such frames, where local scatterer reorganization has taken place due to mechanical deformations, reduces the average percent standard deviation among power spectra by 26% and averaging 10 frames reduces the average percent standard deviation by 49%. Deformation compounding is used in this study to improve measurements of backscatter coefficients. These tests show deformation compounding is a promising method to improve the accuracy of spectrum-based quantitative ultrasound for tissue characterization.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Ultrasonography/methods , Data Interpretation, Statistical , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography/instrumentation
2.
J Acoust Soc Am ; 128(2): 903-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20707460

ABSTRACT

Applicability of ultrasound phantoms to biological tissue has been limited because most phantoms have generally used strong scatterers. The objective was to develop very weakly scattering phantoms, whose acoustic scattering properties are likely closer to those of tissues and then compare theoretical simulations and experimental backscatter coefficient (BSC) results. The phantoms consisted of agar spheres of various diameters (nominally between 90 and 212 microm), containing ultrafiltered milk, suspended in an agar background. BSC estimates were performed at two institutions over the frequency range 1-13 MHz, and compared to three models. Excellent agreement was shown between the two laboratory results as well as with the three models.


Subject(s)
Agar , Phantoms, Imaging , Scattering, Radiation , Ultrasonography/instrumentation , Animals , Microspheres , Milk , Models, Theoretical , Observer Variation , Particle Size , Reproducibility of Results , Ultrafiltration
3.
Ultrason Imaging ; 32(1): 48-64, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20690431

ABSTRACT

Ultrasonic backscatter is useful for characterizing tissues and several groups have reported methods for estimating backscattering properties. Previous interlaboratory comparisons have been made to test the ability to accurately estimate the backscatter coefficient (BSC) by different laboratories around the world. Results of these comparisons showed variability in BSC estimates but were acquired only for a relatively narrow frequency range, and, most importantly, lacked reference to any independent predictions from scattering theory. The goal of this study was to compare Faran-scattering-theory predictions with cooperatively-measured backscatter coefficients for low-attenuating and tissue-like attenuating phantoms containing glass sphere scatterers of different sizes for which BSCs can independently be predicted. Ultrasonic backscatter measurementswere made for frequencies from 1 to 12 MHz. Backscatter coefficients were estimated using two different planar-reflector techniques at two laboratories for two groups of phantoms. Excellent agreement was observed between BSC estimates from both laboratories. In addition, good agreement with the predictions of Faran's theory was obtained, with average fractional (bias) errors ranging from 8-14%. This interlaboratory comparison demonstrates the ability to accurately estimate parameters derived from the BSC, including an effective scatterer size and the acoustic concentration, both of which may prove useful for diagnostic applications of ultrasound tissue characterization.


Subject(s)
Ultrasonics , Ultrasonography/standards , Animals , Equipment Design , Gelatin , Glass , Milk , Phantoms, Imaging , Signal Processing, Computer-Assisted , Transducers , Water
4.
J Ultrasound Med ; 29(7): 1117-23, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20587435

ABSTRACT

OBJECTIVE: To translate quantitative ultrasound (QUS) from the laboratory into the clinic, it is necessary to demonstrate that the measurements are platform independent. Because the backscatter coefficient (BSC) is the fundamental estimate from which additional QUS estimates are calculated, agreement between BSC results using different systems must be demonstrated. This study was an intercomparison of BSCs from in vivo spontaneous rat mammary tumors acquired by different groups using 3 clinical array systems and a single-element laboratory scanner system. METHODS: Radio frequency data spanning the 1- to 14-MHz frequency range were acquired in 3 dimensions from all animals using each system. Each group processed their radio frequency data independently, and the resulting BSCs were compared. The rat tumors were diagnosed as either carcinoma or fibroadenoma. RESULTS: Carcinoma BSC results exhibited small variations between the multiple slices acquired with each transducer, with similar slopes of BSC versus frequency for all systems. Somewhat larger variations were observed in fibroadenomas, although BSC variations between slices of the same tumor were of comparable magnitude to variations between transducers and systems. The root mean squared (RMS) errors between different transducers and imaging platforms were highly variable. The lowest RMS errors were observed for the fibroadenomas between 4 and 5 MHz, with an average RMS error of 4 x 10(-5) cm(-1)Sr(-1) and an average BSC value of 7.1 x 10(-4) cm(-1)Sr(-1), or approximately 5% error. The highest errors were observed for the carcinoma between 7 and 8 MHz, with an RMS error of 1.1 x 10(-1) cm(-1)Sr(-1) and an average BSC value of 3.5 x 10(-2) cm(-1)Sr(-1), or approximately 300% error. CONCLUSIONS: This technical advance shows the potential for QUS technology to function with different imaging platforms.


Subject(s)
Neoplasms/diagnostic imaging , Transducers , Animals , Rats , Rats, Sprague-Dawley , Ultrasonography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...