Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 469: 133948, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38493633

ABSTRACT

Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Cadmium , Antimony , Lead , Gold , Sand , Biological Availability , Soil Pollutants/analysis , Australia , Soil , Mining
2.
Environ Pollut ; 341: 122881, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37935301

ABSTRACT

In this study, smelter contaminated soil was treated with various soil amendments (ferric sulfate [Fe2(SO4)3], triple superphosphate [TSP] and biochar) to determine their efficacy in immobilizing soil lead (Pb) and arsenic (As). In soils incubated with ferric sulfate (0.6M), gastric phase Pb bioaccessibility was reduced from 1939 ± 17 mg kg-1 to 245 ± 4.7 mg kg-1, while intestinal phase bioaccessibility was reduced from 194 ± 25 mg kg-1 to 11.9 ± 3.5 mg kg-1, driven by the formation of plumbojarosite. In TSP treated soils, there were minor reductions in gastric phase Pb bioaccessibility (to 1631 ± 14 mg kg-1) at the highest TSP concentration (6000 mg kg-1) although greater reductions were observed in the intestinal phase, with bioaccessibility reduced to 9.3 ± 2.2 mg kg-1. Speciation analysis showed that this was primarily driven by the formation of chloropyromorphite in the intestinal phase following Pb and phosphate solubilization in the low pH gastric fluid. At the highest concentration (10% w/w), biochar treated soils showed negligible decreases in Pb bioaccessibility in both gastric and intestinal phases. Validation of bioaccessibility outcomes using an in vivo mouse assay led to similar results, with treatment effect ratios (TER) of 0.20 ± 0.01, 0.76 ± 0.11 and 1.03 ± 0.10 for ferric sulfate (0.6M), TSP (6000 mg kg-1) and biochar (10% w/w) treatments. Results of in vitro and in vivo assays showed that only ferric sulfate treatments were able to significantly reduce As bioaccessibility and bioavailability with TER at the highest application of 0.06 ± 0.00 and 0.14 ± 0.04 respectively. This study highlights the potential application of ferric sulfate treatment for the immobilization of Pb and As in co-contaminated soils.


Subject(s)
Arsenic , Soil Pollutants , Animals , Mice , Arsenic/analysis , Lead , Soil , Biological Availability , Soil Pollutants/analysis , Treatment Outcome
3.
Environ Pollut ; 307: 119498, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35618144

ABSTRACT

In this study, changes in PFAS leachability and bioavailability were determined following the application of RemBind®100 (R100) and RemBind®300 (R300; 1-10% w/w) to PFAS-contaminated soil (Æ©28 PFAS 3.093-32.78 mg kg-1). Small differences were observed in PFAS immobilization efficacy when soil was amended with RemBind® products although adding 5% w/w of either product resulted in a >98% reduction in ASLP PFAS leachability. Variability in immobilization efficacy was attributed to differences in activated carbon composition which influenced physicochemical properties of RemBind® formulations and PFAS sorption. PFOS, PFHxS and PFOA relative bioavailability was also assessed in unamended and amended soil (5% w/w) using an in vivo mouse model. In unamended soil, PFAS relative bioavailability was >60% with differences attributed to physicochemical properties of soil which influenced electrostatic and hydrophobic interactions. However, when PFAS relative bioavailability was assessed in soil amended with 5% w/w R100, individual PFAS relative bioavailability was reduced to 16.1 ± 0.8% to 26.1 ± 0.9% with similar results observed when R300 (5% w/w) was utilised (14.4 ± 1.6% to 24.3 ± 0.8%). Results from this study highlight that soil amendments have the potential to reduce both PFAS leachability and relative bioavailability thereby decreasing mobility and potential exposure to soil-borne contaminants.


Subject(s)
Fluorocarbons , Soil Pollutants , Animals , Biological Availability , Charcoal/chemistry , Mice , Soil/chemistry , Soil Pollutants/analysis
4.
J Hazard Mater ; 418: 126312, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34329036

ABSTRACT

In this study, a novel method for lead (Pb) immobilization was developed in contaminated soils using iron (III) (Fe3+) in conjunction with 0.05 M H2SO4. During method optimization, a range of microwave treatment times, solid to solution ratios, and Fe2(SO4)3/H2SO4 concentrations were assessed using a mining/smelting impacted soil (BHK2, Pb: 3031 mg/kg), followed by treatment of additional Pb contaminated soils (PP, Pb: 1506 mg/kg, G10, Pb: 2454 mg/kg and SoFC-1, Pb: 6340 mg/kg) using the optimized method. Pb bioaccessibility was assessed using USEPA Method 1340, with Pb speciation determined by X-ray Absorption (XAS) spectroscopy. Treatment efficacy was also validated using an in vivo mouse assay, where Pb accumulation in femur, kidney and liver was assessed to confirm in vitro bioaccessibility outcomes. Results showed that Pb bioaccessibility could be reduced by 77.4-97.0% following treatment of soil with Fe2(SO4)3 (0.4-1.0 M), H2SO4 (0.05 M) at 150 °C for 60 min in a closed microwave system. Results of bioavailability assessment demonstrated treatment effect ratio of 0.06-0.07 in femur, 0.06-0.27 in kidney and 0.06-0.11 in liver (bioavailability reduction between 73% and 93%). Formation of plumbojarosite in treated soils was confirmed by XAS analysis.


Subject(s)
Arsenic , Soil Pollutants , Animals , Antimony , Child , Humans , Lead/analysis , Mice , Soil , Soil Pollutants/analysis
5.
J Agric Food Chem ; 68(9): 2615-2622, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32027133

ABSTRACT

Hand-to-mouth activity in children can be an important route for ingestion of soil and dust contaminated with inorganic arsenic. Estimating the relative bioavailability of arsenic present in these media is a critical element in assessing the risks associated with aggregate exposure to this toxic metalloid during their early life. Here, we evaluated the performance of a mouse assay for arsenic bioavailability in two laboratories using a suite of 10 soils. This approach allowed us to examine both intralaboratory and interlaboratory variations in assay performance. Use of a single vendor for preparation of all amended test diets and of a single laboratory for arsenic analysis of samples generated in the participating laboratories minimized contributions of these potential sources of variability in assay performance. Intralaboratory assay data showed that food and water intake and cumulative urine and feces production remained stable over several years. The stability of these measurements accounted for the reproducibility of estimates of arsenic bioavailability obtained from repeated intralaboratory assays using sodium arsenate or soils as the test material. Interlaboratory comparisons found that estimates of variables used to evaluate assay performance (recovery and urinary excretion factor) were similar in the two laboratories. For all soils, estimates of arsenic relative bioavailability obtained in the two laboratories were highly correlated (r2 = 0.94 and slope = 0.9) in a linear regression model. Overall, these findings show that this mouse assay for arsenic bioavailability provides reproducible estimates using a variety of test soils. This robust model may be adaptable for use in other laboratory settings.


Subject(s)
Arsenic/metabolism , Soil Pollutants/metabolism , Animals , Arsenic/chemistry , Arsenic/urine , Biological Availability , Feces/chemistry , Female , Laboratories , Mice , Mice, Inbred C57BL , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/urine
6.
Environ Sci Technol ; 53(17): 10329-10341, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31356748

ABSTRACT

This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 µm) and inhalable (<10 µm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 µm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 µm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 µm fraction) and 56.4% reduction in blood Pb concentration (<10 µm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.


Subject(s)
Soil Pollutants , Animals , Biological Availability , Iron , Mice , Phosphates , Soil
7.
Environ Sci Technol ; 49(18): 11167-75, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26301704

ABSTRACT

In this study, previously established arsenic (As) in vivo-in vitro correlations (IVIVC) were assessed for their validity using an independent data set comprising As relative bioavailability (RBA) and bioaccessibility values for 13 herbicide- and mine-impacted soils. The validation process established the correlation between As RBA (swine model) and bioaccessibility (five in vitro assays), determined whether correlations differed significantly from previous relationships and assessed model bias and error. The capacity of in vitro assays to predict As RBA was demonstrated by the strength of IVIVC; goodness of fit ranged from 0.53 (DIN-I) to 0.74 (UBM-I). When compared to previous IVIVC (Juhasz et al. Environ. Sci. Technol. 2009 , 43 , 9487 ; Juhasz et al. J. Hazard. Mater. 2011 , 197 , 161 ), there was no significant difference (P < 0.01) in the slope and y-intercept for IVG-G, UBM-G, and UBM-I indicating the consistency of these assays for predicting As RBA. However, variability in model bias and prediction error was observed with significantly lower (P < 0.01) error determined for IVG-G suggesting that As RBA predictions using IVG-G may be more robust compared to UBM-G and UBM-I. In contrast, differences in the slope and/or y-intercept were observed for SBRC-I, IVG-I, PBET-G, PBET-I, DIN-G, and DIN-I suggesting that these methodologies may not be suitable for predicting As RBA.


Subject(s)
Arsenic/analysis , Biological Assay/methods , Animals , Arsenic/chemistry , Biological Availability , Linear Models , Particle Size , Reproducibility of Results , Research Design , Soil/chemistry , Soil Pollutants/analysis , Sus scrofa
8.
Environ Sci Technol ; 48(21): 12962-9, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25310703

ABSTRACT

A number of bioaccessibility methodologies have the potential to act as surrogate measures of arsenic (As) relative bioavailability (RBA), however, validation of the in vivo-in vitro relationship is yet to be established. Validation is important for human health risk assessment in order to ensure robust models for predicting As RBA for refining exposure via incidental soil ingestion. In this study, 13 As-contaminated soils were assessed for As RBA (in vivo swine model) and As bioaccessibility (Solubility Bioaccessibility Research Consortium gastric phase extraction; SBRC-G). In vivo and in vitro data were used to assess the validity of the As RBA-bioaccessibility correlation previously described by Juhasz et al. (2009). Arsenic RBA and bioaccessibility in the 13 soils ranged from 6.8±2.4% to 70.5±6.8% and 5.7±0.3% to 78.4±0.8% respectively with a strong linear relationship (R2=0.75) between in vivo and in vitro assays. When the As in vivo-in vitro correlation was compared that of Juhasz et al. (2009), there was no significant difference (P>0.05) indicating that the relationship between As RBA and As bioaccessibility was consistent thereby demonstrating its validation. For these data, a grouped linear regression model was developed (R2=0.82) with a slope and y-intercept of 0.84 and 3.56 respectively. A number of cross validation methodologies (2-fold, repeat random subsampling, leave one out) were utilized to determine the performance of the linear regression model. Residuals and prediction errors ranged from 5.4 to 9.4 and 6.9-12.2 respectively illustrating the capacity of the SBRC-G to accurately predict As RBA in contaminated soil.


Subject(s)
Arsenic/analysis , Arsenic/pharmacokinetics , Risk Assessment/methods , Soil Pollutants/pharmacokinetics , Animals , Biological Availability , Environmental Pollution , Female , Gastric Mucosa/metabolism , Humans , In Vitro Techniques , Linear Models , Logistic Models , Soil Pollutants/analysis , Solubility , Stomach/chemistry , Swine
9.
Environ Sci Technol ; 48(12): 7002-9, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24823360

ABSTRACT

The effect of phosphate treatment on lead relative bioavailability (Pb RBA) was assessed in three distinct Pb-contaminated soils. Phosphoric acid (PA) or rock phosphate were added to smelter (PP2), nonferrous slag (SH15), and shooting range (SR01) impacted soils at a P:Pb molar ratio of 5:1. In all of the phosphate amended soils, Pb RBA decreased compared to that in untreated soils when assessed using an in vivo mouse model. Treatment effect ratios (i.e., the ratio of Pb RBA in treated soil divided by Pb RBA in untreated soil) ranged from 0.39 to 0.67, 0.48 to 0.90, and 0.03 to 0.19 for PP2, SH15, and SR01, respectively. The decrease in Pb RBA following phosphate amendment was attributed to the formation of poorly soluble Pb phosphates (i.e., chloropyromorphite, hydroxypyromorphite, and Pb phosphate) that were identified by X-ray absorption spectroscopy (XAS). However, a similar decrease in Pb RBA was also observed in untreated soils following the sequential gavage of phosphate amendments. This suggests that in vivo processes may also facilitate the formation of poorly soluble Pb phosphates, which decreases Pb absorption. Furthermore, XAS analysis of PA-treated PP2 indicated further in vivo changes in Pb speciation as it moved through the gastrointestinal tract, which resulted in the transformation of hydroxypyromorphite to chloropyromorphite.


Subject(s)
Environmental Pollution/analysis , Lead/isolation & purification , Minerals/chemistry , Phosphates/chemistry , Soil Pollutants/analysis , Soil/chemistry , Absorption , Animals , Biological Availability , Environmental Restoration and Remediation , Gastrointestinal Tract , Mice , Models, Animal , Particle Size , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...