Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 128(3): 377-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25471673

ABSTRACT

KEY MESSAGE: QTL identified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.


Subject(s)
Disease Resistance/genetics , Fusarium , Quantitative Trait Loci , Triticum/genetics , Breeding , Chromosome Mapping , Chromosomes, Plant , Genetic Markers , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Seedlings/microbiology , Triticum/microbiology
2.
Theor Appl Genet ; 121(1): 127-36, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20198470

ABSTRACT

Crown rot of wheat (Triticum aestivum), predominantly caused by the fungus Fusarium pseudograminearum, has become an increasingly important disease constraint in many winter cereal production regions in Australia. Our group has previously identified a range of quantitative trait loci (QTL) for partial resistance to crown rot in various bread wheat sources. Here, we report on work that has assessed the effectiveness of pyramiding QTL to improve resistance to crown rot. Two doubled haploid populations were analysed--one from a cross between two previously characterised sources of partial seedling resistance (2-49 and W21MMT70; n = 208) and one from a cross between 2-49 and the commercial variety Sunco, a source of adult field resistance (n = 134). Both populations were phenotyped for seedling resistance to crown rot. Microsatellite and DArT markers were used to construct whole genome linkage maps for use in composite interval mapping (CIM) to identify QTL. Three QTL were detected in both trials conducted on the 2-49/W21MMT70 population. These were located on chromosomes 1D (QCr.usq-1D.1), 3B (QCr.usq-3B.1) and 7A. QCr.usq-1D.1 and the previously undetected 7A QTL were inherited from 2-49. QCr.usq-3B.1, inherited from W21MMT70, was the most significant of the QTL, explaining up to 40.5% of the phenotypic variance. Three QTL were identified in multiple trials of the Sunco/2-49 population. These were located on chromosomes 1D (QCr.usq-1D.1), 2B (QCr.usq-2B.2) and 4B (QCr.usq-4B.1). Only QCr.usq-2B.2 was inherited from Sunco. QCr.usq-4B.1 was the most significant of these QTL, explaining up to 19.1% of the phenotypic variance. In the 2-49/W21MMT70 population, several DH lines performed significantly better than either parent, with the best recording an average disease severity rating of only 3.8% of that scored by the susceptible check cultivar Puseas. These lines represent a new level of seedling crown rot resistance in wheat.


Subject(s)
Fusarium/pathogenicity , Immunity, Innate/genetics , Plant Diseases , Quantitative Trait Loci , Seedlings , Triticum , Chromosome Mapping , Crosses, Genetic , Fusarium/immunology , Genes, Plant , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Triticum/genetics , Triticum/immunology , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...