Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 12(4): 1094-1108, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36935615

ABSTRACT

Transcriptional programming leverages systems of engineered transcription factors to impart decision-making (e.g., Boolean logic) in chassis cells. The number of components used to construct said decision-making systems is rapidly increasing, making an exhaustive experimental evaluation of iterations of biological circuits impractical. Accordingly, we posited that a predictive tool is needed to guide and accelerate the design of transcriptional programs. The work described here involves the development and experimental characterization of a large collection of network-capable single-INPUT logical operations─i.e., engineered BUFFER (repressor) and engineered NOT (antirepressor) logical operations. Using this single-INPUT data and developed metrology, we were able to model and predict the performances of all fundamental two-INPUT compressed logical operations (i.e., compressed AND gates and compressed NOR gates). In addition, we were able to model and predict the performance of compressed mixed phenotype logical operations (A NIMPLY B gates and complementary B NIMPLY A gates). These results demonstrate that single-INPUT data is sufficient to accurately predict both the qualitative and quantitative performance of a complex circuit. Accordingly, this work has set the stage for the predictive design of transcriptional programs of greater complexity.


Subject(s)
Logic , Transcription Factors , Transcription Factors/genetics
2.
Nat Commun ; 11(1): 4440, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895374

ABSTRACT

Traditionally engineered genetic circuits have almost exclusively used naturally occurring transcriptional repressors. Recently, non-natural transcription factors (repressors) have been engineered and employed in synthetic biology with great success. However, transcriptional anti-repressors have largely been absent with regard to the regulation of genes in engineered genetic circuits. Here, we present a workflow for engineering systems of non-natural anti-repressors. In this study, we create 41 inducible anti-repressors. This collection of transcription factors respond to two distinct ligands, fructose (anti-FruR) or D-ribose (anti-RbsR); and were complemented by 14 additional engineered anti-repressors that respond to the ligand isopropyl ß-d-1-thiogalactopyranoside (anti-LacI). In turn, we use this collection of anti-repressors and complementary genetic architectures to confer logical control over gene expression. Here, we achieved all NOT oriented logical controls (i.e., NOT, NOR, NAND, and XNOR). The engineered transcription factors and corresponding series, parallel, and series-parallel genetic architectures represent a nascent anti-repressor based transcriptional programming structure.


Subject(s)
Bioengineering/methods , Lac Repressors/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Gene Expression/physiology , Gene Regulatory Networks , Lac Repressors/chemical synthesis , Ligands , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/chemical synthesis , Synthetic Biology/methods , Transcription Factors/chemical synthesis , Transcription Factors/metabolism
3.
Curr Opin Struct Biol ; 63: 115-122, 2020 08.
Article in English | MEDLINE | ID: mdl-32575020

ABSTRACT

Protein allostery is a vitally important protein function that has proven to be a vexing problem to understand at the molecular level. Allosteric communication is a hallmark of many protein functions. However, despite more than four decades of study the details regarding allosteric communication in protein systems are still being developed. Engineering of LacI and related homologues to confer alternate allosteric communication has shed light on the pre-requisites for the de novo design of allosteric communication. While the de novo design of an allosteric pathway and complementary functional surfaces has not been realized, this review highlights recent advances that set the stage for true predictive design for a given protein topology.


Subject(s)
Allosteric Regulation , Allosteric Site , Models, Molecular , Protein Engineering , Proteins/chemistry , Binding Sites , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Proteins/genetics , Signal Transduction , Structure-Activity Relationship , Transcription Factors/chemistry , Transcription Factors/metabolism
4.
Carbohydr Res ; 443-444: 1-14, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28319681

ABSTRACT

The stereoselective peracetylation of α-d-xylose (1) and α-l-arabinose (4) using a combination of triethylamine and acetic anhydride in the presence or absence of a catalytic amount of dimethylaminopyridine (DMAP) is described. The peracetylated d-xylose and l-arabinose alpha pyranose anomers 2α and 5α are obtained in 97% and 56% yields respectively. The peracetylated d-xylose beta pyranose anomer 2ß is obtained in 71% yield through simple modification of the reaction conditions. Details regarding synthesis and isolation optimization studies under different conditions are presented below. The stereoselective peracetylation reactions disclosed here have been used to separate mixtures of d-xylose and l-arabinose as their peracetylated derivatives 2ß and 5α in 47% and 42% yields and can provide pure pentoses after deacetylation.


Subject(s)
Polysaccharides/chemistry , Sugars/chemistry , Acetylation , Catalysis , Pyridines/chemistry , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...