Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Evol ; 10(2): 875-890, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32015851

ABSTRACT

Helosciadium repens (Jacq.) W.D.J. Koch is threatened by genetic erosion. It is a Crop Wild Relative (CWR) of celery and celeriac and a potentially valuable genetic resource for plant breeding. The objective of this study was the analysis of distribution of genetic diversity with a set of selected populations in Germany. The results of the genetic analysis and data obtained during the site visits were used to identify a subset which was chosen to best represent the genetic diversity of H. repens in Germany. The chance of long-term conservation by securing the identified populations in genetic reserves is distinctly possible.Seven hundred and fifteen individuals from 27 sites were assessed using six simple sequence repeat markers. Discriminant analysis of principal components was used to identify six clusters of genetically similar individuals. The complementary compositional genetic differentiation Δj was calculated to designate a subset of populations chosen to best represent the overall genetic diversity. Entry 18R (Δ18R = 0.2498) represented its pooled remainder the best, while entry 22R (Δ22R = 0.4902) differed the most from its complement.Based on the results of the genetic analysis and information regarding the current conservation status, 14 most appropriate wild populations for potential genetic reserve were identified. The used markers display a low level of genetic variation between the analyzed populations, and a split between Northern and Southern populations was observed.CWR species are essential genetic resources for plant breeding and food security. However, 11.5% of the European CWRs are threatened. Therefore, it is of utmost importance to determine their genetic compositions. These insights will provide the fundamental basis for making crucial decisions concerning future conservation strategies for H. repens.

2.
Ecol Evol ; 9(24): 13954-13965, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938494

ABSTRACT

Morphological and ecological differences of two forms of Helosciadium repens are known and described in the literature: aquatic and terrestrial. However, their taxonomic status is currently unknown. The question whether they are genotypically adapted to specific environmental conditions or are those differences a result of phenotypic plasticity is addressed in this study.SSR and ISSR data were used to uncover genotypic differences. Data from drought stress experiments (system water content and relative water content of leaves) were used to evaluate the response to water as an environmental factor. The stomatal index of both forms grown under different water treatments was analyzed.The principal component analysis of the ISSR data revealed no clustering that would correspond with ecotypes. The diversity parameters of the SSR data showed no significant differences. The aquatic populations showed a tendency toward heterozygosity, while the terrestrial ones showed a bias toward homozygosity. Both forms responded similarly to the changes in water availability, with newly produced leaves after drought stress that were better adapted to repeated drought stress. Stomatal indices were higher in plants from aquatic habitats, but these differences disappeared when the plants were grown in soil.The observed responses indicate that the differences between forms are due to phenotypic plasticity.

3.
Mol Phylogenet Evol ; 95: 79-93, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26639102

ABSTRACT

The disjunct distribution of the subgenus Anguinum of the genus Allium makes it a good candidate to test models of Northern hemisphere biogeography. Here we conduct phylogenetic analysis with the nuclear marker ITS and three different chloroplast markers (rps16 intron, rbcL-atpB spacer, rpl32-trnL spacer). Divergence time estimations (Beast) relying on published ITS substitution rates and ancestral range reconstructions were calculated to elucidate the biogeographical history of the subgenus. Additionally we compiled distribution maps for all species with data taken from the literature, herbariums and data from field observations. The main radiation of the subgenus took place in the last one million years and is still going on. They have their origins in the mid Miocene in East Asia and were highly influenced by the climate fluctuations in the Pliocene/Pleistocene period. Conflicting tree topologies between nuclear and cpDNA markers of Allium tricoccum Solander indicate that the species is of hybridogenous origin. Cloning the ITS sequence revealed the parental copies and confirmed our conclusion. One originated from the Eurasian and the other from the East Asian clade. We were able to show that it reached North America most likely via the Beringia around 2.5mya (95% HPD of 0.35-5.26mya). Our data suggest that Allium victorialis L. is only distributed in mountain pastures in Europe as it forms a well-supported clade in the ITS tree. In the analysis of the molecular markers we found two distinct types of Allium ochotense Prokh. and we suggest splitting the species based on Prokhanov's (1930) proposal. Taxonomical remarks and an identification key to all species of the subgenus Anguinum is provided.


Subject(s)
Allium/classification , Allium/genetics , DNA, Chloroplast/genetics , Europe , Asia, Eastern , Genetic Speciation , Liliaceae/classification , Liliaceae/genetics , North America , Phylogeny , Phylogeography , Sequence Analysis, DNA
4.
Nat Commun ; 6: 8536, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26456084

ABSTRACT

Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy.

5.
Nano Lett ; 14(6): 3623-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24867338

ABSTRACT

The response to strain in covalently bound single layers has a large impact on the growth and properties. We investigate the quasi-two-dimensional hexagonal boron nitride on Rh(111), which is interesting due to its high intrinsic corrugation. We use combined atomic force and scanning tunneling microscopy to measure the response of this monolayer to probing forces. Three-dimensional force maps and the atomic resolution of the layer enable us to determine lateral and vertical stiffness of this prototypical system with unprecedented spatial resolution. Extremely low stiffnesses ≈1 N/m are derived. Our experiments give insights into the mechanical properties of corrugated incommensurate layers that buckle into the third dimension to relieve strain.

6.
Nat Commun ; 4: 2110, 2013.
Article in English | MEDLINE | ID: mdl-23817525

ABSTRACT

The Kondo effect arises due to the interaction between a localized spin and the electrons of a surrounding host. Studies of individual magnetic impurities by scanning tunneling spectroscopy have renewed interest in Kondo physics; however, a quantitative comparison with theoretical predictions remained challenging. Here we show that the zero-bias anomaly detected on an organic radical weakly coupled to a Au (111) surface can be described with astonishing agreement by perturbation theory as originally developed by Kondo 60 years ago. Our results demonstrate that Kondo physics can only be fully conceived by studying both temperature and magnetic field dependence of the resonance. The identification of a spin 1/2 Kondo system is of relevance not only as a benchmark for predictions for Kondo physics but also for correlated electron materials in general.

7.
J Chem Phys ; 127(8): 084319, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17764260

ABSTRACT

The infrared spectra of the O(2) (-).benzene and O(4) (-).benzene complexes are determined by means of Ar predissociation spectroscopy. Several transitions due to CH stretch fundamentals and various combination bands are observed in the 2700-3100 cm(-1) region. The experimental results are interpreted with the aid of electronic structure calculations. A comparison of the calculated and experimental spectra reveals that the spectrum of O(2) (-).benzene most likely arises from an isomer where the superoxide molecule binds preferentially to one CH group of benzene. In contrast, the spectrum of O(4) (-).benzene yields a CH pattern remarkably similar to that displayed by the C(2nu) X(-).benzene (X=halogen) complexes, consistent with a structure with two CH groups equally involved in the bonding. The lower energy vibrational fundamental transitions of the O(4) (-) anion are recovered with a slight redshift in the O(4) (-).benzene spectrum, establishing that this charge-delocalized dimer ion retains its identity upon complexation.

SELECTION OF CITATIONS
SEARCH DETAIL
...