Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 9(7): 892-908, 2016 08.
Article in English | MEDLINE | ID: mdl-27468307

ABSTRACT

Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

2.
Mol Ecol ; 24(9): 2226-40, 2015 May.
Article in English | MEDLINE | ID: mdl-25439241

ABSTRACT

Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species.


Subject(s)
Asteraceae/genetics , Biological Evolution , Introduced Species , Selection, Genetic , Alleles , Asteraceae/classification , Comparative Genomic Hybridization , Founder Effect , Genes, Plant , Genomics/methods , Genotype , Models, Genetic , Transcriptome
3.
Mol Ecol ; 24(9): 2277-97, 2015 May.
Article in English | MEDLINE | ID: mdl-25474505

ABSTRACT

Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Introduced Species , Epigenesis, Genetic , Genetic Drift , Genetic Variation , Genetics, Population , Phenotype
4.
Am J Bot ; 101(12): 2043-51, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25480701

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Interspecific hybridization may have considerable effects on plant structural defenses that can contribute to the success of invasive hybrid lineages. Changes in fruit structural and material properties are predicted to have key effects on predispersal granivory.• METHODS: Here, we asked whether plant structure can increase the fitness of a hybrid invasive relative to its progenitors. We compared fruit traits of the hybrid-derived lineage, California wild radish, with its progenitors, cultivated radish and jointed charlock.• KEY RESULTS: The hybrid lineage is significantly different from one or both ancestors in fruit length, mass, diameter, volume, shape, wall strength, and internal seed distribution. We experimentally exposed the fruits of both hybrid and wild progenitor to avian granivores and found (1) different types and degrees of damage at the different fruit sections and (2) significant differences in the inflicted damage at different sections of the fruit.• CONCLUSIONS: Combining our descriptive and experimental data, we conclude that the novel seed protection of the hybrid California wild radish is an important defense mechanism. It offers differential protection to its seeds and according to our findings, better protection of seeds that have been found to be better competitors. We suggest then that the fruit has enabled, at least in part, the successful replacement of the parental species by the hybrid lineage.


Subject(s)
Adaptation, Physiological , Fruit/anatomy & histology , Herbivory , Hybridization, Genetic , Phenotype , Raphanus/physiology , Seeds , Animals , Birds , Brassicaceae , California , Raphanus/anatomy & histology , Raphanus/genetics , Stress, Physiological
5.
PLoS One ; 8(9): e71916, 2013.
Article in English | MEDLINE | ID: mdl-24039727

ABSTRACT

Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group ("the world's worst weeds"), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance.


Subject(s)
Crops, Agricultural/drug effects , Herbicides/pharmacology , Plant Weeds/drug effects , Biological Evolution , Crops, Agricultural/genetics , Enzyme Inhibitors/pharmacology , Herbicide Resistance , Magnoliopsida/drug effects , Magnoliopsida/genetics , Phenotype , Phylogeny , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Plant Weeds/genetics
6.
PLoS One ; 7(8): e40803, 2012.
Article in English | MEDLINE | ID: mdl-22912666

ABSTRACT

BACKGROUND: The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. CONCLUSIONS/SIGNIFICANCE: We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.


Subject(s)
Ants/physiology , Ecosystem , Models, Statistical , Plant Physiological Phenomena , Symbiosis , Trees , Animals , Extinction, Biological , South America
7.
Evol Appl ; 3(5-6): 494-504, 2010 Sep.
Article in English | MEDLINE | ID: mdl-25567942

ABSTRACT

The evolution of problematic plants, both weeds and invasives, is a topic of increasing interest. Plants that have evolved from domesticated ancestors have certain advantages for study. Because of their economic importance, domesticated plants are generally well-characterized and readily available for ecogenetic comparison with their wild descendants. Thus, the evolutionary history of crop descendants has the potential to be reconstructed in some detail. Furthermore, growing crop progenitors with their problematic descendants in a common environment allows for the identification of significant evolutionary differences that correlate with weediness or invasiveness. We sought well-established examples of invasives and weeds for which genetic and/or ethnobotanical evidence has confirmed their evolution from domesticates. We found surprisingly few cases, only 13. We examine our list for generalizations and then some selected cases to reveal how plant pests have evolved from domesticates. Despite their potential utility, crop descendants remain underexploited for evolutionary study. Promising evolutionary research opportunities for these systems are abundant and worthy of pursuit.

SELECTION OF CITATIONS
SEARCH DETAIL
...