Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14464, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34262124

ABSTRACT

Stromboli Volcano is well known for its persistent explosive activity. On July 3rd and August 28th 2019, two paroxysmal explosions occurred, generating an eruptive column that quickly rose up to 5 km above sea level. Both events were detected by advanced local monitoring networks operated by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and Laboratorio di Geofisica Sperimentale of the University of Firenze (LGS-UNIFI). Signals were also recorded by the Italian national seismic network at a range of hundreds of kilometres and by infrasonic arrays up to distances of 3700 km. Using state-of-the-art propagation modeling, we identify the various seismic and infrasound phases that are used for precise timing of the eruptions. We highlight the advantage of dense regional seismo-acoustic networks to enhance volcanic signal detection in poorly monitored regions, to provide timely warning of eruptions and reliable source amplitude estimate to Volcanic Ash Advisory Centres (VAAC).

2.
Sci Rep ; 9(1): 18015, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31784608

ABSTRACT

Among ground-based volcano monitoring techniques, infrasound is the only one capable of detecting explosive eruptions from distances of thousands of kilometers. We show how infrasound array analysis, using acoustic amplitude and detection persistency, allows automatic, near-real-time identification of eruptions of Etna volcano (Italy), for stations at distances greater than 500 km. A semi-empirical attenuation relation is applied to recover the pressure time history at the source using infrasound recorded at global scale (>500 km). An infrasound parameter (IP), defined as the product between the number of detections, filtered for the expected back-azimuth of Etna volcano, and range corrected amplitude, is compared with the explosive activity at Etna volcano that was associated with aviation color code RED warnings. This shows that, during favourable propagation conditions, global arrays are capable of identifying explosive activity of Etna 87% of the period of analysis without negative false alerts. Events are typically not detected during unfavourable propagation conditions, thus resulting in a time variable efficiency of the system. We suggest that infrasound monitoring on a global scale can provide timely input for Volcanic Ash Advisory Centres (VAAC) even when a latency of ~1 hour, due to propagation time, is considered. The results highlight the capability of infrasound for near-real-time volcano monitoring at a regional and global scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...