Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(8): e0254697, 2021.
Article in English | MEDLINE | ID: mdl-34424918

ABSTRACT

The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller. Tumour-derived inactivating mutations in both Merlin and the CDC73 PAFC subunit mutually disrupt their interaction and growth suppression by Merlin requires CDC73. Merlin interacts with the PAFC in a cell density-dependent manner and we identify a role for FAT cadherins in regulating the Merlin-PAFC interaction. Our results suggest that in addition to its function within the Hippo pathway, Merlin is part of a tumour suppressor network regulated by cell-cell adhesion which coordinates post-initiation steps of the transcription cycle of genes mediating contact inhibition.


Subject(s)
Cell Adhesion/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Neoplasms/genetics , Neurofibromin 2/genetics , Tumor Suppressor Proteins/genetics , Cell Proliferation/genetics , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Contact Inhibition/genetics , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Neoplasms/pathology , Protein Binding/genetics , Protein Interaction Maps/genetics , Signal Transduction/genetics
2.
Cell Signal ; 87: 110106, 2021 11.
Article in English | MEDLINE | ID: mdl-34363951

ABSTRACT

Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Cell Line, Tumor , DNA Damage , DNA Repair , Homologous Recombination , Humans , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
3.
Nat Commun ; 10(1): 5755, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848340

ABSTRACT

Autophagy perturbation represents an emerging therapeutic strategy in cancer. Although LATS1 and LATS2 kinases, core components of the mammalian Hippo pathway, have been shown to exert tumor suppressive activities, here we report a pro-survival role of LATS1 but not LATS2 in hepatocellular carcinoma (HCC) cells. Specifically, LATS1 restricts lethal autophagy in HCC cells induced by sorafenib, the standard of care for advanced HCC patients. Notably, autophagy regulation by LATS1 is independent of its kinase activity. Instead, LATS1 stabilizes the autophagy core-machinery component Beclin-1 by promoting K27-linked ubiquitination at lysine residues K32 and K263 on Beclin-1. Consequently, ubiquitination of Beclin-1 negatively regulates autophagy by promoting inactive dimer formation of Beclin-1. Our study highlights a functional diversity between LATS1 and LATS2, and uncovers a scaffolding role of LATS1 in mediating a cross-talk between the Hippo signaling pathway and autophagy.


Subject(s)
Autophagy/immunology , Carcinoma, Hepatocellular/pathology , Cell Survival/immunology , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Autophagy/drug effects , Beclin-1/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Datasets as Topic , Disease-Free Survival , Drug Resistance, Neoplasm/immunology , Hippo Signaling Pathway , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Lysine/metabolism , Mice , Mice, Knockout , Organoids , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Stability , Signal Transduction/drug effects , Signal Transduction/immunology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Suppressor Proteins/immunology , Ubiquitination , Xenograft Model Antitumor Assays
4.
EMBO Rep ; 20(11): e48150, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31544310

ABSTRACT

STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context-dependent proximity-labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation-induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin-1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1-dependent cargo export regulation by phosphorylation of XPO1's C-terminal auto-inhibitory domain.


Subject(s)
Autophagy , Cell Nucleus/metabolism , Karyopherins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Carrier Proteins/metabolism , Chromatography, Liquid , Computational Biology/methods , Hippo Signaling Pathway , Humans , Phosphorylation , Protein Binding , Protein Interaction Mapping , Protein Transport , Signal Transduction , Tandem Mass Spectrometry , Exportin 1 Protein
5.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1556-1566, 2019 10.
Article in English | MEDLINE | ID: mdl-31326538

ABSTRACT

Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Protein Serine-Threonine Kinases/metabolism , Proteostasis/physiology , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Cytoskeleton/metabolism , Filamins/metabolism , HEK293 Cells , HeLa Cells , Heat-Shock Proteins/metabolism , Humans , Microfilament Proteins , Mitophagy , Molecular Chaperones/metabolism , Protein Binding , Proteomics , Signal Transduction , Stress, Mechanical
6.
Cells ; 8(6)2019 06 10.
Article in English | MEDLINE | ID: mdl-31185650

ABSTRACT

The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.


Subject(s)
Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Apoptosis , Cell Cycle Checkpoints , DNA Repair , Humans , Neoplasms/metabolism , Protein Interaction Maps , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/classification
7.
J Exp Clin Cancer Res ; 38(1): 158, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-30979377

ABSTRACT

BACKGROUND: RASSF1A, a tumor suppressor gene, is frequently inactivated in lung cancer leading to a YAP-dependent epithelial-mesenchymal transition (EMT). Such effects are partly due to the inactivation of the anti-migratory RhoB GTPase via the inhibitory phosphorylation of GEF-H1, the GDP/GTP exchange factor for RhoB. However, the kinase responsible for RhoB/GEF-H1 inactivation in RASSF1A-depleted cells remained unknown. METHODS: NDR1/2 inactivation by siRNA or shRNA effects on epithelial-mesenchymal transition, invasion, xenograft formation and growth in SCID-/- Beige mice, apoptosis, proliferation, cytokinesis, YAP/TAZ activation were investigated upon RASSF1A loss in human bronchial epithelial cells (HBEC). RESULTS: We demonstrate here that depletion of the YAP-kinases NDR1/2 reverts migration and metastatic properties upon RASSF1A loss in HBEC. We show that NDR2 interacts directly with GEF-H1 (which contains the NDR phosphorylation consensus motif HXRXXS/T), leading to GEF-H1 phosphorylation. We further report that the RASSF1A/NDR2/GEF-H1/RhoB/YAP axis is involved in proper cytokinesis in human bronchial cells, since chromosome proper segregation are NDR-dependent upon RASSF1A or GEF-H1 loss in HBEC. CONCLUSION: To summarize, our data support a model in which, upon RASSF1A silencing, NDR2 gets activated, phosphorylates and inactivates GEF-H1, leading to RhoB inactivation. This cascade induced by RASSF1A loss in bronchial cells is responsible for metastasis properties, YAP activation and cytokinesis defects.


Subject(s)
Cell Movement/genetics , Cytokinesis/genetics , Gene Silencing , Genes, Suppressor , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/genetics , Animals , Biomarkers, Tumor , Cell Cycle Proteins , Cell Line, Tumor , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis , Nuclear Proteins/metabolism , Phenotype , Phosphorylation , Prognosis , Transcription Factors/metabolism , rhoB GTP-Binding Protein/metabolism
8.
Methods Mol Biol ; 1893: 305-317, 2019.
Article in English | MEDLINE | ID: mdl-30565143

ABSTRACT

The Hippo tissue growth control and regeneration pathway is a main regulator of the YAP/TAZ effectors. In this regard, the LATS/NDR serine/threonine protein kinases can function as central components of the Hippo core module. More specifically, LATS/NDR-mediated phosphorylation of YAP/TAZ on different residues can regulate the subcellular localization and/or stability of YAP/TAZ. Therefore, the assessment of LATS/NDR activities can serve as readout for the activity status of the Hippo pathway. Here, we describe our preferred methodology regarding the measurement of the activities of LATS/NDR kinases.


Subject(s)
Enzyme Assays , Protein Serine-Threonine Kinases/metabolism , Enzyme Activation , Enzyme Assays/methods , Immunoprecipitation
9.
Methods Mol Biol ; 1893: 319-331, 2019.
Article in English | MEDLINE | ID: mdl-30565144

ABSTRACT

The Hippo tumor suppressor pathway is fundamental to the coordination of death, growth, proliferation, and differentiation on the cellular level. At the molecular level, a highly conserved Hippo core cassette is central for the regulation of effector activities such as the co-transcriptional activity of YAP. In particular, the mammalian MST1/2 serine/threonine protein kinases (termed Hippo kinase in Drosophila melanogaster) can act as central signal transducers as part of the Hippo core cassette. In this chapter we describe in vitro kinase assays using recombinant MST1/2 kinases and recombinant MST1/2 kinase substrate.


Subject(s)
Enzyme Assays , Protein Serine-Threonine Kinases/metabolism , Recombinant Fusion Proteins/metabolism , Blotting, Western , Enzyme Activation
10.
Dev Cell ; 47(5): 564-575.e5, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30458981

ABSTRACT

Hippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds. In the Hippo pathway, the upstream kinase Hippo can be activated by another kinase, Tao-1. Here, we delineate a related Hippo-like signaling module that Tao-1 regulates to control tracheal morphogenesis in Drosophila melanogaster. Tao-1 activates the Sterile 20-like kinase GckIII by phosphorylating its activation loop, a mode of regulation that is conserved in humans. Tao-1 and GckIII act upstream of the NDR kinase Tricornered to ensure proper tube formation in trachea. Our study reveals that Tao-1 activates two related kinase modules to control both growth and morphogenesis. The Hippo-like signaling pathway we have delineated has a potential role in the human vascular disease cerebral cavernous malformation.


Subject(s)
Morphogenesis , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Trachea/embryology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster , Germinal Center Kinases , HEK293 Cells , Humans , Protein Serine-Threonine Kinases/genetics , Trachea/metabolism
12.
Semin Cancer Biol ; 48: 104-114, 2018 02.
Article in English | MEDLINE | ID: mdl-28579171

ABSTRACT

The NDR (nuclear Dbf2-related)/LATS (large tumour suppressor) family of kinases represents a subclass of the AGC (protein kinase A (PKA)/PKG/PKC-like) group of serine/threonine protein kinases. Members of the NDR/LATS family are vital components of conserved pathways controlling essential cellular processes, such as proliferation (cell cycle progression) and cell death. In particular, the central involvement of NDR/LATS as YAP/TAZ kinases in the Hippo tissue growth control pathway has gained much interest. In this review, we summarise the roles of mammalian NDR1/2 (aka STK38/STK38L) and LATS1/2 in immunity and cancer biology. We also discuss the activation mechanisms of NDR/LATS involving Ste20-like kinases and the MOB1 signal transducer, followed by an overview of NDR/LATS knockout mouse models. We further review the mutation and expression status of NDR/LATS in human cancers and their possible predictive and/or prognostic value in cancer treatment.


Subject(s)
Neoplasms/enzymology , Protein Serine-Threonine Kinases/physiology , Tumor Suppressor Proteins/physiology , Acyltransferases , Adaptor Proteins, Signal Transducing/metabolism , Animals , Humans , Mice, Knockout , Mutation , Neoplasms/immunology , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , YAP-Signaling Proteins
13.
Oncotarget ; 8(45): 78556-78572, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-29108249

ABSTRACT

Pancreatic ductal adenocarcinomas (PDACs) are highly aggressive malignancies, associated with poor clinical prognosis and limited therapeutic options. Oncogenic KRAS mutations are found in over 90% of PDACs, playing a central role in tumor progression. Global gene expression profiling of PDAC reveals 3-4 major molecular subtypes with distinct phenotypic traits and pharmacological vulnerabilities, including variations in oncogenic KRAS pathway dependencies. PDAC cell lines of the aberrantly differentiated endocrine exocrine (ADEX) subtype are robustly KRAS-dependent for survival. The KRAS gene is located on chromosome 12p11-12p12, a region amplified in 5-10% of primary PDACs. Within this amplicon, we identified co-amplification of KRAS with the STK38L gene in a subset of primary human PDACs and PDAC cell lines. Therefore, we determined whether PDAC cell lines are dependent on STK38L expression for proliferation and viability. STK38L encodes a serine/threonine kinase, which shares homology with Hippo pathway kinases LATS1/2. We show that STK38L expression is elevated in a subset of primary PDACs and PDAC cell lines displaying ADEX subtype characteristics, including overexpression of mutant KRAS. RNAi-mediated depletion of STK38L in a subset of ADEX subtype cell lines inhibits cellular proliferation and induces apoptosis. Concomitant with these effects, STK38L depletion causes increased expression of the LATS2 kinase and the cell cycle regulator p21. LATS2 depletion partially rescues the cytostatic and cytotoxic effects of STK38L depletion. Lastly, high STK38L mRNA expression is associated with decreased overall patient survival in PDACs. Collectively, our findings implicate STK38L as a candidate targetable vulnerability in a subset of molecularly-defined PDACs.

14.
Nat Commun ; 8(1): 695, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947795

ABSTRACT

The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction. By studying these variants in human cancer cells and Drosophila, we uncovered that MOB1/Warts binding is essential for tumor suppression, tissue growth control, and development, while stable MOB1/Hippo binding is dispensable and MOB1/Trc binding alone is insufficient. Collectively, we decrypt molecularly, cell biologically, and genetically the importance of the diverse interactions of Hippo core kinases with the pivotal MOB1 signal transducer.The Hippo tumor suppressor pathway is essential for development and tissue growth control. Here the authors employ a multi-disciplinary approach to characterize the interactions of the three Hippo kinases with the signaling adaptor MOB1 and show how they differently affect development, tissue growth and tumor suppression.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Drosophila melanogaster/growth & development , MAP Kinase Kinase Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Animals, Genetically Modified , Cell Line , Cell Line, Tumor , Drosophila melanogaster/genetics , Hippo Signaling Pathway , Humans , MAP Kinase Kinase Kinases/genetics , Models, Molecular , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
17.
Clin Cancer Res ; 23(9): 2213-2222, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27663594

ABSTRACT

Purpose: DNA damage repair can lead to epigenetic changes. DNA mismatch repair proteins bind to platinum DNA adducts and at sites of DNA damage can recruit the DNA methylating enzyme DNMT1, resulting in aberrant methylation. We hypothesised that DNA damage repair during platinum-based chemotherapy may cause aberrant DNA methylation in normal tissues of patients such as blood.Experimental Design: We used Illumina 450k methylation arrays and bisulphite pyrosequencing to investigate methylation at presentation and relapse in blood DNA from patients with ovarian cancer enrolled in the SCOTROC1 trial (n = 247) and in a cohort of ovarian tumor DNA samples collected at first relapse (n = 46). We used an ovarian cancer cell line model to investigate the role of the DNA mismatch repair gene MLH1 in platinum-induced methylation changes.Results: Specific CpG methylation changes in blood at relapse are observed following platinum-based chemotherapy and are associated with patient survival, independent of other clinical factors [hazard ratio, 3.7; 95% confidence interval, 1.8-7.6, P = 2.8 × 10-4]. Similar changes occur in ovarian tumors at relapse, also associated with patient survival (hazard ratio, 2.6; 95% confidence interval, 1.0-6.8, P = 0.048). Using an ovarian cancer cell line model, we demonstrate that functional mismatch repair increases the frequency of platinum-induced methylation.Conclusions: DNA methylation in blood at relapse following chemotherapy, and not at presentation, is informative regarding survival of patients with ovarian cancer. Functional DNA mismatch repair increases the frequency of DNA methylation changes induced by platinum. DNA methylation in blood following chemotherapy could provide a noninvasive means of monitoring patients' epigenetic responses to treatment without requiring a tumor biopsy. Clin Cancer Res; 23(9); 2213-22. ©2016 AACR.


Subject(s)
DNA Methylation/genetics , DNA, Neoplasm/blood , Ovarian Neoplasms/drug therapy , Platinum/administration & dosage , Aged , Cell Line, Tumor , DNA Adducts/genetics , DNA Damage/drug effects , DNA Methylation/drug effects , DNA Repair/drug effects , DNA, Neoplasm/genetics , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/adverse effects , Promoter Regions, Genetic
18.
Methods Mol Biol ; 1505: 265-277, 2017.
Article in English | MEDLINE | ID: mdl-27826870

ABSTRACT

The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitosis , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Hippo Signaling Pathway , Humans , M Phase Cell Cycle Checkpoints
19.
Oncotarget ; 7(28): 44142-44160, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27283898

ABSTRACT

Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells.


Subject(s)
Cell Transformation, Neoplastic/genetics , Mitophagy/genetics , Protein Serine-Threonine Kinases/genetics , ras Proteins/genetics , Animals , Anoikis/genetics , Apoptosis/genetics , Autophagy/genetics , Cell Line , Cell Line, Tumor , HCT116 Cells , HEK293 Cells , Humans , Mice, Nude , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Transplantation, Heterologous , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , ras Proteins/metabolism
20.
Genes (Basel) ; 7(5)2016 May 18.
Article in English | MEDLINE | ID: mdl-27213455

ABSTRACT

The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling.

SELECTION OF CITATIONS
SEARCH DETAIL
...