Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37880183

ABSTRACT

BACKGROUND & AIMS: Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance. METHODS: To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1). RESULTS: Inhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact. CONCLUSIONS: These findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Animals , Humans , Mice , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Glycolysis , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors
2.
J Med Chem ; 64(16): 11904-11933, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34382802

ABSTRACT

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.


Subject(s)
Antineoplastic Agents/therapeutic use , Monocarboxylic Acid Transporters/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Picolinic Acids/therapeutic use , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , HEK293 Cells , Humans , Lactic Acid/metabolism , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
3.
J Med Chem ; 54(22): 7784-96, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-21972967

ABSTRACT

Druglike molecules are defined by Lipinski's rule of 5, to characterize fragment thresholds, they have been reduced from 5 to 3 (Astex's rule of 3). They are applied to assemble fragment libraries, and providers use them to select fragments for commercial offer. We question whether these rules are too stringent to compose fragment libraries with candidates exhibiting sufficient room for chemical subsequent growing and merging modifications as appropriate functional groups for chemical transformations are required. Usually these groups exhibit properties as hydrogen bond donors/acceptors and provide entry points for optimization chemistry. We therefore designed a fragment library (364 entries) without strictly applying the rule of 3. For initial screening for endothiapepsin binding, we performed a biochemical cleavage assay of a fluorogenic substrate at 1 mM. "Hits" were defined to inhibit the enzyme by at least 40%. Fifty-five hits were suggested and subsequently soaked into endothiapepsin crystals. Eleven crystal structures could be determined covering fragments with diverse binding modes: (i) direct binding to the catalytic dyad aspartates, (ii) water-mediated binding to the aspartates, (iii) no direct interaction with the dyad. They occupy different specificity pockets. Only 4 of the 11 fragments are consistent with the rule of 3. Restriction to this rule would have limited the fragment hits to a strongly reduced variety of chemotypes.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Drug Design , Models, Molecular , Quantitative Structure-Activity Relationship , Small Molecule Libraries , Aspartic Acid Endopeptidases/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Fluorescence , Hydrogen Bonding , Hydrogen-Ion Concentration , Molecular Structure , Protein Binding , Solubility , Stereoisomerism
4.
Biochem Biophys Res Commun ; 325(1): 287-95, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15522231

ABSTRACT

Endothelial cells (EC) play a major role in tumor-induced neovascularization and bridge the gap between a microtumor and growth factors such as nutrients and oxygen supply required for expansion. Immortalized human microvascular endothelial cells (HMEC-1) were utilized to assess anti-endothelial effects of 10 novel potential cancer chemopreventive compounds from various sources that we have investigated previously in a human in vitro anti-angiogenic assay. These include the monoacylphloroglucinol isoaspidinol B, 1,2,5,7-tetrahydroxy-anthraquinone, peracetylated carnosic acid (PCA), isoxanthohumol, 2,2',4'-trimethoxychalcone, 3'-bromo-2,4-dimethoxychalcone as well as four synthetic derivatives of lunularic acid, a bibenzyl found in mosses [Int. J. Cancer Prev. 1 (2004) 47]. EC proliferation was inhibited with half-maximal inhibitory concentrations from 0.3 to 49.6muM, whereas EC migration was affected by most compounds at sub-micromolar concentrations. PCA and the bibenzyl derivative EC 1004 potently prevented differentiation of HMEC-1 into tubule-like structures. Overall, our data indicate that inhibition of endothelial cell function contributes to various extents to the chemopreventive or anti-angiogenic potential of these lead compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neovascularization, Pathologic/prevention & control , Antineoplastic Agents/therapeutic use , Cell Cycle/physiology , Cell Differentiation/drug effects , Cell Line , Cell Movement/drug effects , Dose-Response Relationship, Drug , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Humans , Neoplasms/drug therapy
5.
Proc Natl Acad Sci U S A ; 99 Suppl 4: 16400-6, 2002 Dec 10.
Article in English | MEDLINE | ID: mdl-12200548

ABSTRACT

Preventing the formation of insoluble polyglutamine containing protein aggregates in neurons may represent an attractive therapeutic strategy to ameliorate Huntington's disease (HD). Therefore, the ability to screen for small molecules that suppress the self-assembly of huntingtin would have potential clinical and significant research applications. We have developed an automated filter retardation assay for the rapid identification of chemical compounds that prevent HD exon 1 protein aggregation in vitro. Using this method, a total of 25 benzothiazole derivatives that inhibit huntingtin fibrillogenesis in a dose-dependent manner were discovered from a library of approximately 184,000 small molecules. The results obtained by the filter assay were confirmed by immunoblotting, electron microscopy, and mass spectrometry. Furthermore, cell culture studies revealed that 2-amino-4,7-dimethyl-benzothiazol-6-ol, a chemical compound similar to riluzole, significantly inhibits HD exon 1 aggregation in vivo. These findings may provide the basis for a new therapeutic approach to prevent the accumulation of insoluble protein aggregates in Huntington's disease and related glutamine repeat disorders.


Subject(s)
Huntington Disease/drug therapy , Peptides/drug effects , Thiazoles/pharmacology , Benzothiazoles , Blotting, Western , Cell Line , Electrophoresis, Polyacrylamide Gel , Exons , Fluorescent Antibody Technique, Indirect , Humans , Huntingtin Protein , Huntington Disease/metabolism , Microscopy, Electron , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Peptides/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thiazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...