Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(20): 11418-25, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22970884

ABSTRACT

Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.


Subject(s)
Air Pollutants/analysis , Cooking/instrumentation , Particulate Matter/analysis , Soot/analysis , Air Pollution/statistics & numerical data , Biomass , Cooking/statistics & numerical data , Environmental Monitoring , Wood
2.
Anal Chim Acta ; 717: 28-38, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22304813

ABSTRACT

Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions.

3.
Anal Chem ; 83(1): 67-76, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21126058

ABSTRACT

The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

4.
Sci Total Environ ; 408(21): 5106-16, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20692024

ABSTRACT

European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter >23 nm. The volatile phase is removed by using a heated dilution stage (150 degrees C) and a heated tube (at 300-400 degrees C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of approximately 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes <23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution/prevention & control , Environmental Monitoring/methods , Environmental Restoration and Remediation/instrumentation , Particulate Matter/analysis , Vehicle Emissions/prevention & control , Aerosols/chemistry , Air Pollutants/chemistry , Air Pollution/legislation & jurisprudence , Environment , Environmental Restoration and Remediation/legislation & jurisprudence , Government Regulation , Particulate Matter/chemistry , Vehicle Emissions/analysis
5.
Environ Sci Technol ; 44(17): 6601-7, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20684503

ABSTRACT

This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.


Subject(s)
Fires , Fluorescent Dyes/chemistry , Nitrogen Oxides/chemistry , Particulate Matter/chemistry , Wood/metabolism , Molecular Weight , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Spectrometry, Fluorescence , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...