Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Planets ; 126(8): e2021JE006876, 2021 Aug.
Article in English | MEDLINE | ID: mdl-35845553

ABSTRACT

Mars exhibits diverse surface changes at all latitudes and all seasons. Active processes include impact cratering, aeolian sand and dust transport, a variety of slope processes, changes in polar ices, and diverse effects of seasonal CO2 frost. The extent of surface change has been surprising and indicates that the present climate is capable of reshaping the surface. Activity has important implications for the Amazonian history of Mars: understanding processes is a necessary step before we can understand their implications and variations over time.

2.
Earth Space Sci ; 4(8): 506-539, 2017 08.
Article in English | MEDLINE | ID: mdl-29098171

ABSTRACT

The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 µrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 µrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

3.
Nature ; 436(7047): 49-54, 2005 Jul 07.
Article in English | MEDLINE | ID: mdl-16001059

ABSTRACT

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.


Subject(s)
Dust/analysis , Extraterrestrial Environment/chemistry , Geologic Sediments/chemistry , Mars , Soil/analysis , Bromine/analysis , Iron Compounds/analysis , Magnesium Compounds/analysis , Minerals/analysis , Minerals/chemistry , Nickel/analysis , Silicates/analysis , Silicates/chemistry , Spectrophotometry, Infrared , Spectroscopy, Mossbauer , Water/analysis , Water/chemistry
4.
Nature ; 436(7047): 66-9, 2005 Jul 07.
Article in English | MEDLINE | ID: mdl-16001063

ABSTRACT

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rover's tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown 'global' dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.


Subject(s)
Extraterrestrial Environment/chemistry , Geologic Sediments/chemistry , Mars , Soil/analysis , Water/chemistry , Bromine/analysis , Chlorine/analysis , Sulfur/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...