Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Patient Saf Surg ; 18(1): 19, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797826

ABSTRACT

BACKGROUND: Medical professionals are constantly exposed to bodily fluids and sanitizing agents during routine medical procedures. Unbeknownst to many healthcare workers, however, the barrier integrity of medical gloves can be altered when exposed to these substances, potentially resulting in exposure to dangerous pathogens. METHODS: This experimental study was designed to test the hypothesis that the durability of both natural and synthetic solvent-exposed medical gloves will be lower than the durability of the gloves in air. The testing consisted of a sample of commercially available medical gloves exposed to 70% ethanol, phosphate buffered saline, and deionized water, aimed at simulating the environments in which medical gloves are commonly worn. Gloves were included in this study based on their performance in previous durability studies in air. Data were collected over a period of three months. The glove assessment device automatically detects pinhole-sized perforations in medical gloves, eliminating the need to visually inspect each glove. Relative durability was measured as the average number of sandpaper touches until glove puncture. RESULTS: Four out of five glove brands performed better when exposed to all three solvents than in air, which is likely due to slippage in the interface between the wet glove and the sandpaper. Sensicare Micro, a polyisoprene surgical glove, had the most consistent durability in all three solvents tested. A two-way ANOVA revealed that both glove brand (P = 0.0001), solvent (P = 0.0001), and their interaction (P = 0.0040, α = 0.05) significantly affected average glove durability. CONCLUSIONS: Glove durability did not remain consistent in 70% ethanol, phosphate buffered saline, deionized water, and air. These results make it clear that additional testing and labeling information would help healthcare workers select gloves for use in specific environments to ensure the best barrier protection against disease or toxins.

2.
Glob Chall ; 7(9): 2300100, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37745831

ABSTRACT

Despite being an essential line of defense in preventing the spread of diseases, medical glove durability is neither measured routinely nor has standard specifications. In this study, a new glove durability assessment device is used to objectively compare the durability of gloves made of a variety of elastomers from different manufacturers. Results are related to several mechanical tests, including stress relaxation, tensile and tear tests. Overall, natural latex gloves far outperformed those made of synthetic elastomers, and there is great disparity among the different brands of nitrile gloves, some of which do not meet nitrile glove performance requirements. The study includes prototype gloves made from guayule latex, a domestic source of alternative natural rubber latex, currently under commercial development. The guayule gloves outperformed all other gloves tested, including those made from Hevea latex, without posing allergy risks. Mechanical analysis demonstrated that the guayule gloves are as strong as the best alternatives, are softer and more elastic, have better tear strength, and have such low stress relaxation that they cause very little hand fatigue during use. Guayule latex can address the need for domestic production of gloves to resolve supply chain and quality issues and encourage a shift back to natural latex gloves, which will significantly diversify the natural rubber supply.

SELECTION OF CITATIONS
SEARCH DETAIL