Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(1): 851-5, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398535

ABSTRACT

Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr4⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.


Subject(s)
Cobalt/chemistry , Ferric Compounds/chemistry , Ferric Compounds/chemical synthesis , Nanoparticles/chemistry , Zirconium/chemistry
2.
Sci Rep ; 6: 26491, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27215804

ABSTRACT

The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.

3.
Sci Rep ; 6: 22708, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26940159

ABSTRACT

The realization of a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate. These magnetization changes are the largest seen to date to be controllably induced in the FeRh system. Using polarized neutron reflectometry we reveal how just a slight in plane surface strain change at ~290C results in a massive magnetic transformation in the bottom half of the film clearly demonstrating a strong lattice-spin coupling in FeRh. By means of these substrate induced strain changes we show a way to reproducibly explore the effects of temperature and strain on the relative stabilities of the FM and AFM phases in multi-domain metamagnetic systems. This study also demonstrates for the first time the depth dependent nature of a controllable magnetic order using strain in an artificial multiferroic heterostructure.

4.
Philos Trans A Math Phys Eng Sci ; 372(2009): 20120441, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24421374

ABSTRACT

The role of elastic strain for magnetoelectric materials and devices is twofold. It can induce ferroic orders in thin films of otherwise non-ferroic materials. On the other hand, it provides the most exploited coupling mechanism in two-phase magnetoelectric materials and devices today. Complex oxide films (perovskites, spinels) are promising for both routes. The strain control of magnetic order in complex oxide films is a young research field, and few ab initio simulations are available for magnetic order in dependence on lattice parameters and lattice symmetry. Here, an experimental approach for the evaluation of how elastic strain in thin epitaxial films alters their magnetic order is introduced. The magnetic films are grown epitaxially in strain states controlled by buffer layers onto piezoelectric substrates of 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3(001). As an example, the strain dependence of the ordered magnetic moment of SrRuO3 has been investigated. At a tensile strain level of approximately 1%, SrRuO3 is tetragonal, and biaxial elastic strain induces a pronounced suppression of the ordered magnetic moment. As a second example, a strain-driven transition from a ferromagnetic to a magnetically disordered phase has been observed in epitaxial La0.8Sr0.2CoO3 films.

5.
Phys Rev Lett ; 100(7): 076401, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18352575

ABSTRACT

A strain-induced change of the electrical conductivity by several orders of magnitude has been observed for ferromagnetic La(0.7)Sr(0.3)CoO(3) films. Tensile strain is found to drive the narrow-band metal highly insulating. Reversible strain applied using a piezoelectric substrate reveals huge resistance modulations including a giant piezoresistive gauge factor of 7000 at 300 K. Magnetization data recorded for statically and reversibly strained films show moderate changes. This indicates a rather weak strain response of the low-temperature Co spin state. We suggest that a strain-induced static Jahn-Teller-type deformation of the CoO(6) units may provide a localization mechanism that also has impact on electronic transport in the paramagnetic regime.

6.
Biochemistry ; 31(28): 6545-53, 1992 Jul 21.
Article in English | MEDLINE | ID: mdl-1633166

ABSTRACT

A spectral probe mutant (F29W) of chicken skeletal muscle troponin C (TnC) has been prepared in which Phe-29 has been substituted by Trp. Residue 29 is at the COOH-terminal end of the A helix immediately adjacent to the Ca2+ binding loop of site I (residues 30-41) of the regulatory N domain. Since this protein is naturally devoid of Tyr and Trp, spectral features can be assigned unambiguously to the single Trp. The fluorescent quantum yield at 336 nm is increased almost 3-fold in going from the Ca(2+)-free state to the 4Ca2+ state with no change in the wavelength of maximum emission. Comparisons of the Ca2+ titration curves of the change in far-UV CD and fluorescence emission indicated that the latter was associated only with the binding of 2Ca2+ to the regulatory sites I and II. No change in fluorescence was detected by titration with Mg2+. The Ca(2+)-induced transitions of both the N and C domains were highly cooperative. Addition of Ca2+ also produced a red shift in the UV absorbance spectrum and a reduction in positive ellipticity as monitored by near-UV CD measurements. The fluorescent properties of F29W were applied to an investigation of five double mutants: F29W/V45T, F29W/M46Q, F29W/M48A, F29W/L49T, and F29W/M82Q. Ca2+ titration of their fluorescent emissions indicated in each case an increased Ca2+ affinity of their N domains. The magnitude of these changes and the decreased cooperativity observed between Ca2+ binding sites I and II for some of the mutants are discussed in terms of the environment of the mutated residues in the 2Ca2+ and modeled 4Ca2+ states.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Calcium/metabolism , Troponin/chemistry , Animals , Calcium-Binding Proteins/chemistry , Chickens , Circular Dichroism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Conformation , Solubility , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Troponin/genetics , Troponin C , Tryptophan
SELECTION OF CITATIONS
SEARCH DETAIL
...