Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Parasitol ; 53(7): 333-346, 2023 06.
Article in English | MEDLINE | ID: mdl-36997082

ABSTRACT

Squirrel monkeys (Saimiri spp.), new world primates from South America, are very susceptible to toxoplasmosis. Numerous outbreaks of fatal toxoplasmosis in zoos have been identified around the world, resulting in acute respiratory distress and sudden death. To date, preventive hygiene measures or available treatments are not able to significantly reduce this mortality in zoos. Therefore, vaccination seems to be the best long-term solution to control acute toxoplasmosis. Recently, we developed a nasal vaccine composed of total extract of soluble proteins of Toxoplasma gondii associated with muco-adhesive maltodextrin-nanoparticles. The vaccine, which generated specific cellular immune responses, demonstrated efficacy against toxoplasmosis in murine and ovine experimental models. In collaboration with six French zoos, our vaccine was used as a last resort in 48 squirrel monkeys to prevent toxoplasmosis. The full protocol of vaccination includes two intranasal sprays followed by combined intranasal and s.c. administration. No local or systemic side-effects were observed irrespective of the route of administration. Blood samples were collected to study systemic humoral and cellular immune responses up to 1 year after the last vaccination. Vaccination induced a strong and lasting systemic cellular immune response mediated by specific IFN-γ secretion by peripheral blood mononuclear cells. Since the introduction of vaccination, no deaths of squirrel monkeys due to T. gondii has been observed for more than 4 years suggesting the promising usage of our vaccine. Moreover, to explain the high susceptibility of naive squirrel monkeys to toxoplasmosis, their innate immune sensors were investigated. It was observed that Toll-like and Nod-like receptors appear to be functional following T. gondii recognition suggesting that the extreme susceptibility to toxoplasmosis may not be linked to innate detection of the parasite.


Subject(s)
Nanoparticles , Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Animals , Sheep , Mice , Saimiri/parasitology , Toxoplasmosis, Animal/parasitology , Leukocytes, Mononuclear , Vaccination , Antigens, Protozoan , Protozoan Proteins , Antibodies, Protozoan , Mice, Inbred BALB C
2.
Front Immunol ; 11: 2183, 2020.
Article in English | MEDLINE | ID: mdl-33013917

ABSTRACT

Toxoplasma gondii is a parasitic protozoan of worldwide distribution, able to infect all warm-blooded animals, but particularly sheep. Primary infection in pregnant sheep leads to millions of abortions and significant economic losses for the livestock industry. Moreover, infected animals constitute the main parasitic reservoir for humans. Therefore, the development of a One-health vaccine seems the best prevention strategy. Following earlier work, a vaccine constituted of total extract of Toxoplasma gondii proteins (TE) associated with maltodextrin nanoparticles (DGNP) was developed in rodents. In this study we evaluated the ability of this vaccine candidate to protect against latent and congenital toxoplasmosis in sheep. After two immunizations by either intranasal or intradermal route, DGNP/TE vaccine generated specific Th1-cellular immune response, mediated by APC-secretion of IFN-γ and IL-12. Secretion of IL-10 appeared to regulate this Th1 response for intradermally vaccinated sheep but was absent in intranasally-vaccinated animals. Finally, protection against latent toxoplasmosis and transplacental transmission were explored. Intranasal vaccination led to a marked decrease of brain cysts compared with the non-vaccinated group. This DGNP/TE vaccine administered intranasally conferred a high level of protection against latent toxoplasmosis and its transplacental transmission in sheep, highlighting the potential for development of such a vaccine for studies in other species.


Subject(s)
Brain/pathology , Latent Infection/immunology , Nanoparticles/administration & dosage , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Sheep/physiology , Th1 Cells/immunology , Toxoplasma/physiology , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Congenital/immunology , Administration, Intranasal , Animals , Infectious Disease Transmission, Vertical , Lymphocyte Activation , Mice , Nanoparticles/chemistry , Polysaccharides/chemistry , Rats , Vaccination
3.
Carbohydr Polym ; 173: 535-546, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28732897

ABSTRACT

Chitosan (CS) presents antibacterial, mucoadhesive and hemostatic properties and is an ideal candidate for wound dressing applications. This work reports the development of sponge-like materials obtained from physical hydrogels after the interaction between CS and a ß-cyclodextrin polymer (PCD) in acidic conditions to provoke immediate gelation. Characterization consisted of zeta potential (ZP) measurements, rheology analysis, Fourier transform infrared (FTIR), Raman spectroscopy, wide angle X-ray scattering (WAXS) and scanning electron microscopy (SEM). Swelling behavior, cytotoxicity, drug sorption and drug delivery properties of sponges were assessed. ZP indicated that CS and PCD presented opposite charges needed for physical crosslinking. Rheology, swelling, and cytotoxicity of sponges depended on their CS:PCD weight ratios. Increasing PCD in the mixture delayed the gel time, reduced the swelling and increased the cytotoxicity. FTIR and Raman confirmed the physical crosslinking between CS and PCD through ionic interactions, and WAXS showed the amorphous state of the sponges. Finally, the efficiency of chlorhexidine loaded sponge against S. aureus bacteria was proved for up to 30days in agar diffusion tests.


Subject(s)
Bandages , Cellulose/chemistry , Chitosan/chemistry , Cyclodextrins/chemistry , Microscopy, Electron, Scanning , Polymers , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...