Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 8: e8284, 2020.
Article in English | MEDLINE | ID: mdl-31915581

ABSTRACT

BACKGROUND: Differentiating nonwear time from sleep and wake times is essential for the estimation of sleep duration based on actigraphy data. To efficiently analyze large-scale data sets, an automatic method of identifying these three different states is required. Therefore, we developed a classification algorithm to determine nonwear, sleep and wake periods from accelerometer data. Our work aimed to (I) develop a new pattern recognition algorithm for identifying nonwear periods from actigraphy data based on the influence of respiration rate on the power spectrum of the acceleration signal and implement it in an automatic classification algorithm for nonwear/sleep/wake states; (II) address motion artifacts that occur during nonwear periods and are known to cause misclassification of these periods; (III) adjust the algorithm depending on the sensor position (wrist, chest); and (IV) validate the algorithm on both healthy individuals and patients with sleep disorders. METHODS: The study involved 98 participants who wore wrist and chest acceleration sensors for one day of measurements. They spent one night in the sleep laboratory and continued to wear the sensors outside of the laboratory for the remainder of the day. The results of the classification algorithm were compared to those of the reference source: polysomnography for wake/sleep and manual annotations for nonwear/wear classification. RESULTS: The median kappa values for the two locations were 0.83 (wrist) and 0.84 (chest). The level of agreement did not vary significantly by sleep health (good sleepers vs. subjects with sleep disorders) (p = 0.348, p = 0.118) or by sex (p = 0.442, p = 0.456). The intraclass correlation coefficients of nonwear total time between the reference and the algorithm were 0.92 and 0.97 with the outliers and 0.95 and 0.98 after the outliers were removed for the wrist and chest, respectively. There was no evidence of an association between the mean difference (and 95% limits of agreement) and the mean of the two methods for either sensor position (wrist p = 0.110, chest p = 0.164), and the mean differences (algorithm minus reference) were 5.11 [95% LoA -15.4-25.7] and 1.32 [95% LoA -9.59-12.24] min/day, respectively, after the outliers were removed. DISCUSSION: We studied the influence of the respiration wave on the power spectrum of the acceleration signal for the differentiation of nonwear periods from sleep and wake periods. The algorithm combined both spectral analysis of the acceleration signal and rescoring. Based on the Bland-Altman analysis, the chest-worn accelerometer showed better results than the wrist-worn accelerometer.

2.
J Sleep Res ; 28(2): e12694, 2019 04.
Article in English | MEDLINE | ID: mdl-29722079

ABSTRACT

As the prevalence of sleep disorders is increasing, new methods for ambulatory sleep measurement are required. This paper presents electrodermal activity in different sleep stages and a sleep detection algorithm based on electrodermal activity. We analysed electrodermal activity and polysomnographic data of 43 healthy subjects and 48 patients with sleep disorders. Electrodermal activity was measured using an ambulatory device worn at the wrist. Two parameters to describe electrodermal activity were defined based on previous literature: EDASEF (electrodermal activity-smoothed feature) as parameter for skin conductance level; and EDAcounts (number of electrodermal activity-peaks) as skin conductance responses. Analysis of variance indicated significant EDASEF differences between the sleep stages wake versus N1, wake versus N2, wake versus slow-wave sleep, and wake versus rapid eye movement. The analysis of EDAcounts also showed significant differences, especially in the stages slow-wave sleep versus rapid eye movement. Between healthy subjects and patients, a significant disparity of EDAcounts was revealed in stage N1. Furthermore, the variances of EDASEF and EDAcounts in N1, N2 slow-wave sleep and rapid eye movement were higher in the patient group (p [F test] < .05). Next, an electrodermal activity-based sleep/wake discriminating algorithm was constructed. The optimized algorithm achieved an average sensitivity and specificity for sleep detection of 97% and 75%. The epoch agreement rate (average accuracy) was 86%. These outcomes are comparative to sleep detection algorithms based on actigraphy or heart rate variability. The results of this study indicate that electrodermal activity is not only a robust parameter for describing sleep, but also a potential suitable method for ambulatory sleep monitoring.


Subject(s)
Galvanic Skin Response/physiology , Polysomnography/methods , Sleep Stages/physiology , Sleep Wake Disorders/classification , Adult , Algorithms , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...