Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Evolution ; 71(4): 884-897, 2017 04.
Article in English | MEDLINE | ID: mdl-28075480

ABSTRACT

In flowering plants, shifts from outcrossing to partial or complete self-fertilization have occurred independently thousands of times, yet the underlying adaptive processes are difficult to discern. Selfing's ability to provide reproductive assurance when pollination is uncertain is an oft-cited ecological explanation for its evolution, but this benefit may be outweighed by costs diminishing its selective advantage over outcrossing. We directly studied the fitness effects of a self-compatibility mutation that was backcrossed into a self-incompatible (SI) population of Leavenworthia alabamica, illuminating the direction and magnitude of selection on the mating-system modifier. In array experiments conducted in two years, self-compatible (SC) plants produced 17-26% more seed, but this advantage was counteracted by extensive seed discounting-the replacement of high-quality outcrossed seeds by selfed seeds. Using a simple model and simulations, we demonstrate that SC mutations with these attributes rarely spread to high frequency in natural populations, unless inbreeding depression falls below a threshold value (0.57 ≤ δthreshold ≤ 0.70) in SI populations. A combination of heavy seed discounting and inbreeding depression likely explains why outcrossing adaptations such as self-incompatibility are maintained generally, despite persistent input of selfing mutations, and frequent limits on outcross seed production in nature.


Subject(s)
Brassicaceae/physiology , Genetic Fitness , Mutation , Pollination , Self-Fertilization , Alabama , Animals , Brassicaceae/genetics , Insecta/physiology , Pollen , Seeds/growth & development
2.
Evolution ; 69(5): 1191-207, 2015 05.
Article in English | MEDLINE | ID: mdl-25873258

ABSTRACT

Character displacement is a potentially important process driving trait evolution and species diversification. Floral traits may experience character displacement in response to pollinator-mediated competition (ecological character displacement) or the risk of forming hybrids with reduced fitness (reproductive character displacement). We test these and alternative hypotheses to explain a yellow-white petal color polymorphism in Leavenworthia stylosa, where yellow morphs are spatially associated with a white-petaled congener (Leavenworthia exigua) that produces hybrids with complete pollen sterility. A reciprocal transplant experiment found limited evidence of local adaptation of yellow color morphs via increased survival and seed set. Pollinator observations revealed that Leavenworthia attract various pollinators that generally favor white petals and exhibit color constancy. Pollen limitation experiments showed that yellow petals do not alleviate competition for pollination. Interspecific pollinator movements were infrequent and low hybridization rates (∼0.40-0.85%) were found in each morph, with natural rates likely being lower. Regardless, hybridization rates were significantly higher in white morphs of L. stylosa, yielding a small selection coefficient of s = 0.0042 against this phenotype in sympatry with L. exigua. These results provide support for RCD as a mechanism contributing to the pattern of petal color polymorphism in L. stylosa.


Subject(s)
Brassicaceae/genetics , Flowers/genetics , Genetic Speciation , Pigmentation/genetics , Polymorphism, Genetic , Selection, Genetic , Evolution, Molecular , Plant Infertility/genetics , Pollination , Sympatry
3.
Mol Ecol ; 22(7): 1777-91, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23356549

ABSTRACT

The abundant centre hypothesis (ACH) assumes that population abundance, population size, density and per-capita reproductive output should peak at the centre of a species' geographic range and decline towards the periphery. Increased isolation among and decreased reproductive output within edge populations should reduce within-population genetic diversity and increase genetic differentiation among edge relative to central populations. The ACH also predicts asymmetrical gene flow, with net movement of migrants from the centre to edges. We evaluated these ecological assumptions and population-genetic predictions in the endemic flowering plant Leavenworthia stylosa. Although populations were more spatially isolated near range edges, the geographic centre was surrounded by and not coincident with areas of peak population abundance, and plant density increased towards range edges. Per-capita seed number was not associated with distance to the range centre, but seed number/m(2) increased near range edges. In support of ACH predictions, allelic diversity at 12 microsatellite loci declined with distance from the range centre, and pairwise FST values were higher between edge populations than between central populations. Coalescent analyses confirmed that gene flow was most infrequent between edge populations, but there was not an asymmetric pattern of gene flow predicted by the ACH. This study shows that among-population demographic variability largely did not support the ACH, while patterns of genetic diversity, differentiation and gene flow were generally consistent with its predictions. Such mixed support has frequently been observed in tests of the ACH and raises concerns regarding the generality of this hypothesis for species range limits.


Subject(s)
Brassicaceae/genetics , Gene Flow , Genetics, Population , Alleles , Brassicaceae/classification , DNA, Plant/genetics , Ecosystem , Genetic Loci , Genetic Variation , Genotype , Microsatellite Repeats , Phylogeography , Tennessee
4.
Evolution ; 66(4): 1154-66, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22486695

ABSTRACT

The evolution of sexual dimorphism will depend on how sexual, fecundity and viability selection act within each sex, with the different forms of selection potentially operating in opposing directions. We examined selection in the dioecious plant Silene latifolia using planted arrays of selection lines that differed in flower size (small vs. large). In this species, a flower size/number trade-off exists within each sex, and males produce smaller and more numerous flowers than females. Moreover, floral traits are genetically correlated with leaf physiology. Sexual selection favoring males in the small-flower line occurred via greater overlap in the timing of flower output between males from this line and females. Fecundity selection favored males with high flower production, as siring success was proportionate to pollen production. Viability selection opposed sexual selection, favoring males from the large-flower line. In females, fecundity and viability selection operated in the same direction, favoring those from the large-flower line via greater seed production and survival. These results concur with the pattern of floral sexual dimorphism. Together with previous results they suggest that the outcome of the different forms of selection will be environmentally dependent, and therefore help to explain variation among populations in sexually dimorphic traits.


Subject(s)
Flowers/anatomy & histology , Selection, Genetic , Silene/anatomy & histology , Silene/genetics , Phenotype , Reproduction , Sex Characteristics
5.
Evolution ; 65(10): 2872-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21967428

ABSTRACT

Genetic correlations between the sexes can constrain the evolution of sexual dimorphism and be difficult to alter, because traits common to both sexes share the same genetic underpinnings. We tested whether artificial correlational selection favoring specific combinations of male and female traits within families could change the strength of a very high between-sex genetic correlation for flower size in the dioecious plant Silene latifolia. This novel selection dramatically reduced the correlation in two of three selection lines in fewer than five generations. Subsequent selection only on females in a line characterized by a lower between-sex genetic correlation led to a significantly lower correlated response in males, confirming the potential evolutionary impact of the reduced correlation. Although between-sex genetic correlations can potentially constrain the evolution of sexual dimorphism, our findings reveal that these constraints come not from a simple conflict between an inflexible genetic architecture and a pattern of selection working in opposition to it, but rather a complex relationship between a changeable correlation and a form of selection that promotes it. In other words, the form of selection on males and females that leads to sexual dimorphism may also promote the genetic phenomenon that limits sexual dimorphism.


Subject(s)
Silene/genetics , Flowers/anatomy & histology , Flowers/genetics , Flowers/physiology , Reproduction/physiology , Selection, Genetic , Silene/anatomy & histology , Silene/physiology
6.
New Phytol ; 192(2): 542-52, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21726233

ABSTRACT

Intralocus sexual conflict is a form of conflict that does not involve direct interactions between males and females. It arises when selection on a shared trait with a common genetic basis differs between the sexes. Environmental factors, such as resource availability, may influence the expression and evolutionary outcome of such conflict. We quantified the genetic variance-covariance matrix, G, for both sexes of Silene latifolia for floral and leaf traits, as well as the between-sex matrix, B. We also quantified selection on the sexes via survival for 2 yr in four natural populations that varied in water availability. Environment-dependent intralocus sexual conflict exists for specific leaf area, a trait that is genetically correlated between the sexes. Males experienced significant negative selection, but only in populations with relatively limited water availability. Females experienced weakly positive or significant stabilizing selection on the same trait. Specific leaf area is genetically correlated with flower size and number, which are sexually dimorphic in this species. The extent of intralocus sexual conflict varied with the environment. Resolution of such conflict is likely to be confounded, given that specific leaf area is highly genetically integrated with other traits that are also divergent between the sexes.


Subject(s)
Silene/growth & development , Silene/genetics , Biological Evolution , Dehydration , Environment , Festuca/genetics , Festuca/growth & development , Flowers/genetics , Germany , Plant Leaves/genetics , Selection, Genetic , Sex Characteristics
7.
Am J Bot ; 97(6): 1005-13, 2010 Jun.
Article in English | MEDLINE | ID: mdl-21622470

ABSTRACT

PREMISE OF THE STUDY: A mixture of outcrossing and selfing is often observed in plant populations. Although mixed mating is ubiquitous, it has several potential evolutionary explanations. Mixed mating may be actively maintained by selection, passively determined by the pollination environment, or a transitional stage during the evolution of self-fertilization. • METHODS: We studied patterns of self-compatibility and selfing rates in a population of Leavenworthia alabamica that recently lost self-incompatibility. We also experimentally tested whether natural selection against selfing at the pre- or postzygotic stage is sufficient to explain mixed mating in this population. • KEY RESULTS: Visualizing pollen tube growth following self-pollination, we found that nearly all plants were fully self-compatible. Progeny array analysis revealed that the average selfing rate of the population was s = 0.523. The inbreeding coefficient in the parents (F = 0.539) exceeded the amount expected if the selfing rate (s) were constant [F(eq) = s/(2 - s)], indicating either population subdivision or higher selfing rates in the past. Inference of family-level selfing rates revealed substantial variation. Experiments found that self and outcross pollen fertilized nearly equal numbers of ovules in competition. Comparison of seed production following self- or cross-pollination failed to implicate early acting inbreeding depression as a factor maintaining mixed mating. • CONCLUSIONS: The results of our experiments suggest that mixed mating is not maintained by selection against self-pollen or zygotes in this population. Mixed mating is most likely a byproduct of the pollination process but may also be a transitional stage during the evolution of higher selfing rates.

8.
Ecology ; 90(6): 1540-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19569369

ABSTRACT

The mating system of self-compatible plants may fluctuate between years in response to ecological factors that cause variation in the deposition of self pollen vs. outcross pollen on stigmas. Such temporal variation may have significant ecological and evolutionary consequences, but it has rarely been studied, and the mechanisms that mediate temporal variation have almost never been investigated. We tested for variation in the proportion of seeds self-fertilized (s) between two years within 19 populations of the short-lived herb Aquilegia canadensis. Selfing varied widely among populations (range in s = 0.17-1.00, mean s = 0.82) but was inconsistent across years, indicating significant temporal variation. Three populations exhibited especially wide swings in the mating system between years. Mean s did not decrease with increasing population size (N), nor was the fluctuation in s associated with mean N or the change in N. As expected, s declined with increasing separation between anthers and stigmas within flowers (herkogamy), and s fluctuated to a greater extent in populations with more herkogamous flowers. Self-compatible plants can experience wide temporal variation in self-fertilization, and floral traits such as herkogamy may mediate temporal variation by forestalling self-pollination and thus allowing outcrossing during periods when pollinators are frequent.


Subject(s)
Aquilegia/physiology , Flowers/physiology , Models, Biological , Models, Statistical , Population Dynamics , Reproduction/physiology , Time Factors
9.
Evolution ; 61(7): 1661-74, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17598747

ABSTRACT

The mating system of flowering plant populations evolves through selection on genetically based phenotypic variation in floral traits. The physical separation of anthers and stigmas within flowers (herkogamy) is expected to be an important target of selection to limit self-fertilization. We investigated the pattern of phenotypic and genetic variation in herkogamy and its effect of self-fertilization in a broad sample of natural populations of Aquilegia canadensis, a species that is highly selfing despite strong inbreeding depression. Within natural populations, plants exhibit substantial phenotypic variation in herkogamy caused primarily by variation in pistil length rather than stamen length. Compared to other floral traits, herkogamy is much more variable and a greater proportion of variation is distributed among rather than within individuals. We tested for a genetic component of this marked phenotypic variation by growing naturally pollinated seed families from five populations in a common greenhouse environment. For three populations, we detected a significant variation in herkogamy among families, and a positive regression between parental herkogamy measured in the field and progeny herkogamy in the greenhouse, suggesting that there is often genetic variation in herkogamy within natural populations. We estimated levels of self-fertilization for groups of flowers that differed in herkogamy and show that, as expected, herkogamy was associated with reduced selfing in 13 of 19 populations. In six of these populations, we performed floral emasculations to show that this decrease in selfing is due to decreased autogamy (within-flower selfing), the mode of selfing that herkogamy should most directly influence. Taken together, these results suggest that increased herkogamy should be selected to reduce the production of low-quality selfed seed. The combination of high selfing and substantial genetic variation for herkogamy in A. canadensis is enigmatic, and reconciling this observation will require a more integrated analysis of how herkogamy influences not only self-fertilization, but also patterns of outcross pollen import and export.


Subject(s)
Biological Evolution , Flowers , Genetic Variation , Ranunculaceae/genetics , Phenotype , Ranunculaceae/physiology
10.
Am J Bot ; 92(4): 744-51, 2005 Apr.
Article in English | MEDLINE | ID: mdl-21652454

ABSTRACT

Biogeographic models predict that geographically peripheral populations should be smaller, more sparsely distributed, and have a lower per-capita reproductive rate than populations near the center of a species' range. Plants in peripheral populations may, therefore, receive less pollinator visitation and outcross pollination, which may select for self-fertilization to provide reproductive assurance. We tested these predictions by comparing population size, plant density, seed production, floral traits, and mating system parameters between 10 populations of Aquilegia canadensis near the northern margin of the range with 10 near the range center. Contrary to predictions, peripheral populations were not smaller, less dense, nor less productive than central populations. Nevertheless, we detected substantial regional differences in key floral traits. Plants in central populations produced larger flowers with 68% greater herkogamy and had 30% more flowers open simultaneously than plants in northern populations. However, there was no regional difference in the mating system. In northern populations, 73% (range = 60-88%) of seeds were self-fertilized compared to 76% (51-100%) in central populations. In both regions, adult inbreeding coefficients were near zero, indicating very strong inbreeding depression despite high selfing. Marked geographic variation in key floral traits does not reflect evolutionary differentiation in the mating system.

11.
Evolution ; 58(12): 2693-703, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15696748

ABSTRACT

Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.


Subject(s)
Adaptation, Biological/genetics , Aquilegia/genetics , Biological Evolution , Genetics, Population , Inbreeding , Flowers/anatomy & histology , Isoenzymes , Ontario , Reproduction/physiology
12.
Nature ; 416(6878): 320-3, 2002 Mar 21.
Article in English | MEDLINE | ID: mdl-11907577

ABSTRACT

The transition from outcrossing to self-fertilization is one of the most common evolutionary trends in plants. Reproductive assurance, where self-fertilization ensures seed production when pollinators and/or potential mates are scarce, is the most long-standing and most widely accepted explanation for the evolution of selfing, but there have been few experimental tests of this hypothesis. Moreover, many apparently adaptive floral mechanisms that ensure the autonomous production of selfed seed might use ovules that would have otherwise been outcrossed. This seed discounting is costly if selfed offspring are less viable than their outcrossed counterparts, as often happens. The fertility benefit of reproductive assurance has never been examined in the light of seed discounting. Here we combine experimental measures of reproductive assurance with marker-gene estimates of self-fertilization, seed discounting and inbreeding depression to show that, during 2 years in 10 Ontario populations of Aquilegia canadensis (Ranunculaceae), reproductive assurance through self-fertilization increases seed production, but this benefit is greatly outweighed by severe seed discounting and inbreeding depression.


Subject(s)
Ranunculaceae/physiology , Fertility , Ranunculaceae/genetics , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...