Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 11: 566320, 2020.
Article in English | MEDLINE | ID: mdl-33101388

ABSTRACT

Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.

2.
EMBO J ; 35(10): 1115-32, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27072995

ABSTRACT

The existence of a 30-nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg(2+)-dependent self-association of linear 12-mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call "oligomers", are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10-nm fibers, rather than folded 30-nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro These results indicate that a 10-nm array of nucleosomes has the intrinsic ability to self-assemble into large chromatin globules stabilized by nucleosome-nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.


Subject(s)
Nucleosomes/metabolism , DNA/metabolism , HeLa Cells , Humans , Magnesium Chloride/pharmacology , Micrococcal Nuclease/metabolism , Nucleosomes/drug effects
3.
Proc Natl Acad Sci U S A ; 107(7): 3210-5, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20133764

ABSTRACT

The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.


Subject(s)
Chemoreceptor Cells/metabolism , Nasal Mucosa/cytology , Receptors, G-Protein-Coupled/metabolism , Taste/physiology , Animals , Calcium/metabolism , Fluorescence , Gene Deletion , Gram-Negative Bacteria/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Immunohistochemistry , Mice , Mice, Transgenic , Quaternary Ammonium Compounds , TRPM Cation Channels/genetics , Trigeminal Nerve/physiology
4.
J Bacteriol ; 191(19): 5901-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19648250

ABSTRACT

Acyl-homoserine lactone (acyl-HSL) quorum-sensing signaling is common to many Proteobacteria. Acyl-HSLs are synthesized by the LuxI family of synthases, and the signal response is mediated by members of the LuxR family of transcriptional regulators. Burkholderia thailandensis is a member of a closely related cluster of three species, including the animal pathogens Burkholderia mallei and Burkholderia pseudomallei. Members of this group have similar luxI and luxR homologs, and these genes contribute to B. pseudomallei and B. mallei virulence. B. thailandensis possesses three pairs of luxI-luxR homologs. One of these pairs, BtaI2-BtaR2, has been shown to produce and respond to 3OHC(10)-HSL and to control the synthesis of an antibiotic. By using a markerless-exhange method, we constructed an assortment of B. thailandensis quorum-sensing mutants, and we used these mutants to show that BtaI1 is responsible for C(8)-HSL production and BtaI3 is responsible for 3OHC(8)-HSL production. We also show that a strain incapable of acyl-HSL production is capable of growth on the same assortment of carbon and nitrogen sources as the wild type. Furthermore, this mutant shows no loss of virulence compared to the wild type in mice. However, the wild type self-aggregates in minimal medium, whereas the quorum-sensing mutant does not. The wild-type aggregation phenotype is recovered by addition of the BtaI1-R1 HSL signal C(8)-HSL. We propose that the key function of the BtaR1-BtaI1 quorum-sensing system is to cause cells to gather into aggregates once a sufficient population has been established.


Subject(s)
Burkholderia/genetics , Burkholderia/metabolism , Quorum Sensing/genetics , Acyl-Butyrolactones/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Burkholderia/pathogenicity , Burkholderia Infections/genetics , Burkholderia Infections/microbiology , Chromatography, Liquid , DNA Mutational Analysis/methods , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred BALB C , Tandem Mass Spectrometry , Virulence/genetics
5.
J Bacteriol ; 191(12): 3909-18, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19376863

ABSTRACT

The genome of Burkholderia thailandensis codes for several LuxR-LuxI quorum-sensing systems. We used B. thailandensis quorum-sensing deletion mutants and recombinant Escherichia coli to determine the nature of the signals produced by one of the systems, BtaR2-BtaI2, and to show that this system controls genes required for the synthesis of an antibiotic. BtaI2 is an acyl-homoserine lactone (acyl-HSL) synthase that produces two hydroxylated acyl-HSLs, N-3-hydroxy-decanoyl-HSL (3OHC(10)-HSL) and N-3-hydroxy-octanoyl-HSL (3OHC(8)-HSL). The btaI2 gene is positively regulated by BtaR2 in response to either 3OHC(10)-HSL or 3OHC(8)-HSL. The btaR2-btaI2 genes are located within clusters of genes with annotations that suggest they are involved in the synthesis of polyketide or peptide antibiotics. Stationary-phase cultures of wild-type B. thailandensis, but not a btaR2 mutant or a strain deficient in acyl-HSL synthesis, produced an antibiotic effective against gram-positive bacteria. Two of the putative antibiotic synthesis gene clusters require BtaR2 and either 3OHC(10)-HSL or 3OHC(8)-HSL for activation. This represents another example where antibiotic synthesis is controlled by quorum sensing, and it has implications for the evolutionary divergence of B. thailandensis and its close relatives Burkholderia pseudomallei and Burkholderia mallei.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Burkholderia/physiology , Gene Expression Regulation, Bacterial , Quorum Sensing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia/genetics , Ligases/genetics , Ligases/metabolism , Sequence Deletion
6.
J Bacteriol ; 190(14): 5137-41, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18487338

ABSTRACT

Burkholderia mallei has two acyl-homoserine lactone (acyl-HSL) signal generator-receptor pairs and two additional signal receptors, all of which contribute to virulence. We show that B. mallei produces N-3-hydroxy-octanoyl HSL (3OHC8-HSL) but a bmaI3 mutant does not. Recombinant Escherichia coli expressing BmaI3 produces hydroxylated acyl-HSLs, with 3OHC8-HSL being the most abundant compound. In recombinant E. coli, BmaR3 responds to 3OHC8-HSL but not to other acyl-HSLs. These data indicate that the signal for BmaR3-BmaI3 quorum sensing is 3OHC8-HSL.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia mallei/physiology , Quorum Sensing , 4-Butyrolactone/biosynthesis , Escherichia coli/genetics , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Appl Environ Microbiol ; 73(22): 7443-55, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17921283

ABSTRACT

Phenazine production by Pseudomonas fluorescens 2-79 and P. chlororaphis isolates 30-84 and PCL1391 is regulated by quorum sensing through the activator PhzR and acyl-homoserine lactones (acyl-HSLs) synthesized by PhzI. PhzI from P. fluorescens 2-79 produces five acyl-HSLs that include four 3-hydroxy species. Of these, N-(3-hydroxyhexanoyl)-HSL is the biologically relevant ligand for PhzR. The quorum-sensing systems of P. chlororaphis strains 30-84 and PCL1391 have been reported to produce and respond to N-(hexanoyl)-HSL. These differences were of interest since PhzI and PhzR of strain 2-79 share almost 90% sequence identity with orthologs from strains 30-84 and PCL1391. In this study, as assessed by thin-layer chromatography, the three strains produce almost identical complements of acyl-HSLs. The major species produced by P. chlororaphis 30-84 were identified by mass spectrometry as 3-OH-acyl-HSLs with chain lengths of 6, 8, and 10 carbons. Heterologous bacteria expressing cloned phzI from strain 30-84 produced the four 3-OH acyl-HSLs in amounts similar to those seen for the wild type. Strain 30-84, but not strain 2-79, also produced N-(butanoyl)-HSL. A second acyl-HSL synthase of strain 30-84, CsaI, is responsible for the synthesis of this short-chain signal. Strain 30-84 accumulated N-(3-OH-hexanoyl)-HSL to the highest levels, more than 100-fold greater than that of N-(hexanoyl)-HSL. In titration assays, PhzR(30-84) responded to both N-(3-OH-hexanoyl)- and N-(hexanoyl)-HSL with equal sensitivities. However, only the 3-OH-hexanoyl signal is produced by strain 30-84 at levels high enough to activate PhzR. We conclude that strains 2-79, 30-84, and PCL1391 use N-(3-OH-hexanoyl)-HSL to activate PhzR.


Subject(s)
4-Butyrolactone/analogs & derivatives , Operon , Pseudomonas/genetics , Pseudomonas/metabolism , Quorum Sensing , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Chromatography, Liquid , Chromatography, Thin Layer , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Molecular Sequence Data , Molecular Structure , Phenazines/metabolism , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Tandem Mass Spectrometry , Trans-Activators/chemistry , Trans-Activators/genetics , Trans-Activators/metabolism
8.
J Bacteriol ; 188(2): 773-83, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16385066

ABSTRACT

Many gram-negative bacteria produce a specific set of N-acyl-L-homoserine-lactone (AHL) signaling molecules for the purpose of quorum sensing, which is a means of regulating coordinated gene expression in a cell-density-dependent manner. AHLs are produced from acylated acyl-carrier protein (acyl-ACP) and S-adenosyl-L-methionine by the AHL synthase enzyme. The appearance of specific AHLs is due in large part to the intrinsic specificity of the enzyme for subsets of acyl-ACP substrates. Structural studies of the Pantoea stewartii enzyme EsaI and AHL-sensitive bioassays revealed that threonine 140 in the acyl chain binding pocket directs the enzyme toward production of 3-oxo-homoserine lactones. Mass spectrometry was used to examine the range of AHL molecular species produced by AHL synthases under a variety of conditions. An AHL selective normal-phase chromatographic purification with addition of a deuterated AHL internal standard was followed by reverse-phase liquid chromatography-tandem mass spectrometry in order to obtain estimates of the relative amounts of different AHLs from biological samples. The AHLs produced by wild-type and engineered EsaI and LasI AHL synthases show that intrinsic specificity and different cellular conditions influence the production of AHLs. The threonine at position 140 in EsaI is important for the preference for 3-oxo-acyl-ACPs, but the role of the equivalent threonine in LasI is less clear. In addition, LasI expressed in Escherichia coli produces a high proportion of unusual AHLs with acyl chains consisting of an odd number of carbons. Furthermore, these studies offer additional methods that will be useful for surveying and quantitating AHLs from different sources.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/metabolism , Gram-Negative Bacteria/enzymology , Ligases/metabolism , 4-Butyrolactone/analysis , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Bacterial Proteins/genetics , Gas Chromatography-Mass Spectrometry , Gram-Negative Bacteria/metabolism , Ligases/genetics , Mutation , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...