Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 107(7): 3210-5, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20133764

ABSTRACT

The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.


Subject(s)
Chemoreceptor Cells/metabolism , Nasal Mucosa/cytology , Receptors, G-Protein-Coupled/metabolism , Taste/physiology , Animals , Calcium/metabolism , Fluorescence , Gene Deletion , Gram-Negative Bacteria/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Immunohistochemistry , Mice , Mice, Transgenic , Quaternary Ammonium Compounds , TRPM Cation Channels/genetics , Trigeminal Nerve/physiology
2.
J Bacteriol ; 191(19): 5901-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19648250

ABSTRACT

Acyl-homoserine lactone (acyl-HSL) quorum-sensing signaling is common to many Proteobacteria. Acyl-HSLs are synthesized by the LuxI family of synthases, and the signal response is mediated by members of the LuxR family of transcriptional regulators. Burkholderia thailandensis is a member of a closely related cluster of three species, including the animal pathogens Burkholderia mallei and Burkholderia pseudomallei. Members of this group have similar luxI and luxR homologs, and these genes contribute to B. pseudomallei and B. mallei virulence. B. thailandensis possesses three pairs of luxI-luxR homologs. One of these pairs, BtaI2-BtaR2, has been shown to produce and respond to 3OHC(10)-HSL and to control the synthesis of an antibiotic. By using a markerless-exhange method, we constructed an assortment of B. thailandensis quorum-sensing mutants, and we used these mutants to show that BtaI1 is responsible for C(8)-HSL production and BtaI3 is responsible for 3OHC(8)-HSL production. We also show that a strain incapable of acyl-HSL production is capable of growth on the same assortment of carbon and nitrogen sources as the wild type. Furthermore, this mutant shows no loss of virulence compared to the wild type in mice. However, the wild type self-aggregates in minimal medium, whereas the quorum-sensing mutant does not. The wild-type aggregation phenotype is recovered by addition of the BtaI1-R1 HSL signal C(8)-HSL. We propose that the key function of the BtaR1-BtaI1 quorum-sensing system is to cause cells to gather into aggregates once a sufficient population has been established.


Subject(s)
Burkholderia/genetics , Burkholderia/metabolism , Quorum Sensing/genetics , Acyl-Butyrolactones/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Burkholderia/pathogenicity , Burkholderia Infections/genetics , Burkholderia Infections/microbiology , Chromatography, Liquid , DNA Mutational Analysis/methods , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred BALB C , Tandem Mass Spectrometry , Virulence/genetics
3.
J Bacteriol ; 191(12): 3909-18, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19376863

ABSTRACT

The genome of Burkholderia thailandensis codes for several LuxR-LuxI quorum-sensing systems. We used B. thailandensis quorum-sensing deletion mutants and recombinant Escherichia coli to determine the nature of the signals produced by one of the systems, BtaR2-BtaI2, and to show that this system controls genes required for the synthesis of an antibiotic. BtaI2 is an acyl-homoserine lactone (acyl-HSL) synthase that produces two hydroxylated acyl-HSLs, N-3-hydroxy-decanoyl-HSL (3OHC(10)-HSL) and N-3-hydroxy-octanoyl-HSL (3OHC(8)-HSL). The btaI2 gene is positively regulated by BtaR2 in response to either 3OHC(10)-HSL or 3OHC(8)-HSL. The btaR2-btaI2 genes are located within clusters of genes with annotations that suggest they are involved in the synthesis of polyketide or peptide antibiotics. Stationary-phase cultures of wild-type B. thailandensis, but not a btaR2 mutant or a strain deficient in acyl-HSL synthesis, produced an antibiotic effective against gram-positive bacteria. Two of the putative antibiotic synthesis gene clusters require BtaR2 and either 3OHC(10)-HSL or 3OHC(8)-HSL for activation. This represents another example where antibiotic synthesis is controlled by quorum sensing, and it has implications for the evolutionary divergence of B. thailandensis and its close relatives Burkholderia pseudomallei and Burkholderia mallei.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Burkholderia/physiology , Gene Expression Regulation, Bacterial , Quorum Sensing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia/genetics , Ligases/genetics , Ligases/metabolism , Sequence Deletion
4.
J Bacteriol ; 190(14): 5137-41, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18487338

ABSTRACT

Burkholderia mallei has two acyl-homoserine lactone (acyl-HSL) signal generator-receptor pairs and two additional signal receptors, all of which contribute to virulence. We show that B. mallei produces N-3-hydroxy-octanoyl HSL (3OHC8-HSL) but a bmaI3 mutant does not. Recombinant Escherichia coli expressing BmaI3 produces hydroxylated acyl-HSLs, with 3OHC8-HSL being the most abundant compound. In recombinant E. coli, BmaR3 responds to 3OHC8-HSL but not to other acyl-HSLs. These data indicate that the signal for BmaR3-BmaI3 quorum sensing is 3OHC8-HSL.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia mallei/physiology , Quorum Sensing , 4-Butyrolactone/biosynthesis , Escherichia coli/genetics , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...