Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 26(10): 2616-22, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22744417

ABSTRACT

Sixteen healthy untrained women participated in a 6-week progressive resistance training program to compare 2 common methods of classifying fiber types. The women were a subset from a previous study and were randomly divided into 2 groups: traditional strength training (TS, n = 9) and non-exercising control (C, n = 7). The TS group performed 3 lower limb exercises (leg press, squat, and knee extension) using 6-10 repetitions maximum 2 days per week for the first week and 3 days per week for the remaining 5 weeks (17 total workouts). Pre- and posttraining vastus lateralis muscle biopsies were analyzed for fiber type composition using 2 popular methods: myosin adenosine triphosphatase (mATPase) histochemistry and myosin heavy chain (MHC) immunohistochemistry. Six fiber types (I, IC, IIC, IIA, IIAX, and IIX) were delineated using each method separately and in combination. Because of the subjective nature of each method (visual assessment of staining intensities), IIAX fibers expressing a small amount of MHCIIa were misclassified as type IIX using mATPase histochemistry, whereas those expressing a small amount of MHCIIx were misclassified as type IIA using MHC immunohistochemistry. As such, either method used separately resulted in an underestimation of the type IIAX fiber population. In addition, the use of mATPase histochemistry alone resulted in an overestimation of type IIX, whereas there was an overestimation of type IIA using MHC immunohistochemistry. These fiber typing errors were most evident after 6 weeks of resistance training when fibers were in transition from type IIX to IIA. These data suggest that the best approach to more accurately determine muscle fiber type composition (especially after training) is the combination of mATPase histochemical and MHC immunohistochemical methods.


Subject(s)
Muscle Fibers, Fast-Twitch/classification , Muscle Fibers, Fast-Twitch/cytology , Resistance Training , Biopsy , Female , Histocytochemistry , Humans , Muscle Fibers, Fast-Twitch/enzymology , Muscle Fibers, Fast-Twitch/physiology , Myosin Heavy Chains/analysis , Myosins/analysis , Quadriceps Muscle/cytology , Quadriceps Muscle/enzymology , Quadriceps Muscle/physiology , Young Adult
2.
Eur J Appl Physiol ; 112(10): 3585-95, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22328004

ABSTRACT

Thirty-four untrained women participated in a 6-week program to investigate slow-speed versus "normal" speed resistance-training protocols. Subjects were divided into: slow-speed (SS), normal-speed/traditional-strength (TS), normal-speed/traditional muscular endurance (TE), and non-exercising control (C) groups. Leg press, squats, and knee extensions were performed 2 days/week for the first week and 3 days/week for the remaining 5 weeks (~2 min rest). The SS group performed 6-10 repetitions maximum (6-10RM) for each set with 10 s concentric (con) and 4 s eccentric (ecc) contractions. The TS and TE groups performed sets of 6-10RM and 20-30RM, respectively, at "normal" speed (1-2 s/con and ecc contractions). TE and SS trained at the same relative intensity (~40-60% 1RM), whereas TS trained at ~80-85% 1RM. Pre- and post-training muscle biopsies were analyzed for fiber-type composition, cross-sectional area (CSA), and myosin heavy chain (MHC) content. The percentage of type IIX fibers decreased and IIAX increased in all three training groups. However, only TS showed an increase in percentage of type IIA fibers. CSA of fiber types I, IIA, and IIX increased in TS. In SS, only the CSA of IIA and IIX fibers increased. These changes were supported by MHC data. No significant changes for any parameters were found for the C group. In conclusion, slow-speed strength training induced a greater adaptive response compared to training with a similar resistance at "normal" speed. However, training with a higher intensity at "normal" speed resulted in the greatest overall muscle fiber response in each of the variables assessed.


Subject(s)
Adaptation, Physiological/physiology , Muscle Fibers, Skeletal/physiology , Resistance Training , Adult , Exercise/physiology , Female , Humans , Lower Extremity/physiology , Physical Endurance/physiology , Weight Lifting/physiology
3.
J Strength Cond Res ; 22(1): 119-27, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18296964

ABSTRACT

The purpose of this study was to investigate the effects of a six-week (16-17 training sessions) low velocity resistance training program (LV) on various performance measures as compared to a traditional strength (TS) and a traditional muscular endurance (TE) resistance training program. Thirty-four healthy adult females (21.1 +/- 2.7 y) were randomly divided into 4 groups: control (C), TS, TE, and LV. Workouts consisted of 3 exercises: leg press (LP), back squat (SQ), and knee extension (KE). Each subject was pre- and posttested for 1 repetition maximum (1RM), muscular endurance, maximal oxygen consumption (VO2max), muscular power, and body composition. After the pretesting, TS, TE, and LV groups attended a minimum of 16 out of 17 training sessions in which the LP, SQ, and KE were performed to fatigue for each of 3 sets. For each training session, TS trained at 6-10 RM and TE trained at 20-30 RM both with 1-2 second concentric/1-2 second eccentric; and LV trained at 6-10 RM, with 10 second concentric/4 s eccentric. Statistical significance was determined at an alpha level of 0.05. LV increased relative LP and KE 1 RM, but the percent increase was smaller than TS, and not different from C in the SQ. For muscular endurance, LV improved similarly to TE for LP and less than TS and TE for KE. Body composition improved for all groups including C (significant main effect). In conclusion, muscular strength improved with LV training however, TS showed a larger improvement. Muscular endurance improved with LV training, but not above what TE or TS demonstrated. For all other variables, there were no significant improvements for LV beyond what C demonstrated.


Subject(s)
Adaptation, Physiological/physiology , Muscle Strength/physiology , Physical Endurance/physiology , Weight Lifting/physiology , Adult , Analysis of Variance , Anthropometry , Back , Body Composition , Female , Humans , Lower Extremity , Oxygen Consumption/physiology , Physical Education and Training/methods , Probability , Sensitivity and Specificity , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...