Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 29(12): 1463-1470, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31010722

ABSTRACT

We have previously reported the syntheses of a series of 3,6-disubstituted quinolines as modulators of the retinoic acid receptor-related orphan receptor gamma t (RORγt). These molecules are potent binders but are high molecular weight and they exhibited poor solubility at pH 2 and pH 7. This manuscript details our efforts at improving physical chemical properties for this series of compounds by increasing the diversity at the 3-position (i.e. introducing heteroatoms and lowering the molecular weight). These efforts have led to molecules which are potent binders with improved solubility.


Subject(s)
Drug Inverse Agonism , Quinolines/agonists , Animals , Humans , Molecular Structure , Structure-Activity Relationship
2.
PLoS One ; 12(8): e0181868, 2017.
Article in English | MEDLINE | ID: mdl-28763457

ABSTRACT

RORγt and RORα are transcription factors of the RAR-related orphan nuclear receptor (ROR) family. They are expressed in Th17 cells and have been suggested to play a role in Th17 differentiation. Although RORγt signature genes have been characterized in mouse Th17 cells, detailed information on its transcriptional control in human Th17 cells is limited and even less is known about RORα signature genes which have not been reported in either human or mouse T cells. In this study, global gene expression of human CD4 T cells activated under Th17 skewing conditions was profiled by RNA sequencing. RORγt and RORα signature genes were identified in these Th17 cells treated with specific siRNAs to knock down RORγt or RORα expression. We have generated selective small molecule RORγt modulators and they were also utilized as pharmacological tools in RORγt signature gene identification. Our results showed that RORγt controlled the expression of a very selective number of genes in Th17 cells and most of them were regulated by RORα as well albeit a weaker influence. Key Th17 genes including IL-17A, IL-17F, IL-23R, CCL20 and CCR6 were shown to be regulated by both RORγt and RORα. Our results demonstrated an overlapping role of RORγt and RORα in human Th17 cell differentiation through regulation of a defined common set of Th17 genes. RORγt as a drug target for treatment of Th17 mediated autoimmune diseases such as psoriasis has been demonstrated recently in clinical trials. Our results suggest that RORα could be involved in same disease mechanisms and gene signatures identified in this report could be valuable biomarkers for tracking the pharmacodynamic effects of compounds that modulate RORγt or RORα activities in patients.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells/metabolism , Biomarkers/metabolism , Cell Differentiation , Gene Expression Profiling , Gene Expression Regulation , Genes, Reporter , Humans , Inhibitory Concentration 50 , Leukocytes, Mononuclear/cytology , Lymphocyte Activation , RNA, Small Interfering/metabolism , Recombinant Proteins/metabolism , Th1 Cells/cytology
3.
J Med Chem ; 60(8): 3511-3517, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28300404

ABSTRACT

A prevalent observation in high-throughput screening and drug discovery programs is the inhibition of protein function by small-molecule compound aggregation. Here, we present the X-ray structural description of aggregation-based inhibition of a protein-protein interaction involving tumor necrosis factor α (TNFα). An ordered conglomerate of an aggregating small-molecule inhibitor (JNJ525) induces a quaternary structure switch of TNFα that inhibits the protein-protein interaction between TNFα and TNFα receptors. SPD-304 may employ a similar mechanism of inhibition.


Subject(s)
Tumor Necrosis Factor-alpha/antagonists & inhibitors , Carbon-13 Magnetic Resonance Spectroscopy , Crystallography, X-Ray , Humans , Molecular Structure , Protein Binding , Proton Magnetic Resonance Spectroscopy , Tumor Necrosis Factor-alpha/chemistry
4.
J Biol Chem ; 291(24): 12724-12731, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27129215

ABSTRACT

5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors/pharmacology , 5-Lipoxygenase-Activating Proteins/genetics , Amino Acid Substitution , Mutation , 5-Lipoxygenase-Activating Protein Inhibitors/chemistry , 5-Lipoxygenase-Activating Protein Inhibitors/metabolism , 5-Lipoxygenase-Activating Proteins/chemistry , 5-Lipoxygenase-Activating Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Biocatalysis/drug effects , Crystallography, X-Ray , Dogs , Enzyme Assays/methods , Humans , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Mice , Models, Molecular , Molecular Structure , Protein Binding , Protein Domains , Quinolines/chemistry , Quinolines/metabolism , Quinolines/pharmacology , Rats , Sequence Homology, Amino Acid , Species Specificity
5.
Proc Natl Acad Sci U S A ; 111(33): 12163-8, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25092323

ABSTRACT

The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17-producing CD4(+) Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurring oxysterols as RORγt agonists. The most potent and selective activator for RORγt is 7ß, 27-dihydroxycholesterol (7ß, 27-OHC). We show that these oxysterols reverse the inhibitory effect of an RORγt antagonist, ursolic acid, in RORγ- or RORγt-dependent cell-based reporter assays. These ligands bind directly to recombinant RORγ ligand binding domain (LBD), promote recruitment of a coactivator peptide, and reduce binding of a corepressor peptide to RORγ LBD. In primary cells, 7ß, 27-OHC and 7α, 27-OHC enhance the differentiation of murine and human IL-17-producing Th17 cells in an RORγt-dependent manner. Importantly, we showed that Th17, but not Th1 cells, preferentially produce these two oxysterols. In vivo, administration of 7ß, 27-OHC in mice enhanced IL-17 production. Mice deficient in CYP27A1, a key enzyme in generating these oxysterols, showed significant reduction of IL-17-producing cells, including CD4(+) and γδ(+) T cells, similar to the deficiency observed in RORγt knockout mice. Our results reveal a previously unknown mechanism for selected oxysterols as immune modulators and a direct role for CYP27A1 in generating these RORγt agonist ligands, which we propose as RORγt endogenous ligands, driving both innate and adaptive IL-17-dependent immune responses.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sterols/pharmacology , Th17 Cells/cytology , Animals , Cell Differentiation , Cholestanetriol 26-Monooxygenase/metabolism , Interleukin-17/biosynthesis , Ligands , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Sterols/metabolism
6.
Bioorg Med Chem Lett ; 23(3): 811-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23260350

ABSTRACT

Leukotrienes (LT's) are known to play a physiological role in inflammatory immune response. Leukotriene A(4) hydrolase (LTA(4)H) is a cystolic enzyme that stereospecifically catalyzes the transformation of LTA(4) to LTB(4). LTB(4) is a known pro-inflammatory mediator. This paper describes the identification and synthesis of substituted benzofurans as LTH(4)H inhibitors. The benzofuran series demonstrated reduced mouse and human whole blood LTB(4) levels in vitro and led to the identification one analog for advanced profiling. Benzofuran 28 showed dose responsive target engagement and provides a useful tool to explore a LTA(4)H inhibitor for the treatment of inflammatory diseases, such as asthma and inflammatory bowel disease (IBD).


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Animals , Benzofurans/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Structure , Rats , Rats, Sprague-Dawley
7.
Bioorg Med Chem Lett ; 22(24): 7504-11, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23127888

ABSTRACT

Previously, benzthiazole containing LTA(4)H inhibitors were discovered that were potent (1-3), but were associated with the potential for a hERG liability. Utilizing medicinal chemistry first principles (e.g., introducing rigidity, lowering cLogD) a new benzthiazole series was designed, congeners of 1-3, which led to compounds 7a, 7c, 12a-d which exhibited LTA(4)H IC(50)=3-6 nM and hERG Dofetilide Binding IC(50)=8.9-> >10 µM.


Subject(s)
Aza Compounds/pharmacology , Benzothiazoles/pharmacology , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Mice , Molecular Structure , Structure-Activity Relationship
8.
Mol Cell Biol ; 30(14): 3596-609, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20457812

ABSTRACT

In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytokines/biosynthesis , Phosphoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Binding, Competitive , Humans , Jurkat Cells , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphoproteins/deficiency , Phosphoproteins/genetics , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...