Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986570

ABSTRACT

Diabetic nephropathy (DN) accounts for approximately 50% of end-stage renal diseases. Vascular endothelial growth factor A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in DN, but its role is unclear. The lack of pharmacological tools to modify renal concentrations further hinders the understanding of its role in DN. In this study, rats were evaluated after 3 weeks of streptozotocin-induced diabetes and two suramin treatments (10 mg/kg, ip). Vascular endothelial growth factor A expression was evaluated by western blot of glomeruli and immunofluorescence of the renal cortex. RT-PCR for receptors Vegfr1 mRNA and Vegfr2 mRNA quantitation was performed. The soluble adhesive molecules (sICAM-1, sVCAM-1) in blood were measured by ELISA and the vasoreactivity of interlobar arteries to acetylcholine was evaluated using wire myography. Suramin administration reduced the expression and intraglomerular localisation of VEGF-A. Increased VEGFR-2 expression in diabetes was reduced by suramin to non-diabetic levels. Diabetes reduced the sVCAM-1 concentrations. Suramin in diabetes restored acetylcholine relaxation properties to non-diabetic levels. In conclusion, suramin affects the renal VEGF-A/VEGF receptors axis and has a beneficial impact on endothelium-dependent relaxation of renal arteries. Thus, suramin may be used as a pharmacological agent to investigate the potential role of VEGF-A in the pathogenesis of renal vascular complications in short-term diabetes.

2.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36719185

ABSTRACT

Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10- to 11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.


Subject(s)
Iron , Phagocytosis , Female , Animals , Mice , Iron/metabolism , Phagocytosis/physiology , Protein Aggregates , Erythrocytes/physiology , Hemolysis , Aging , Mammals/metabolism
3.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232742

ABSTRACT

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Subject(s)
Copper Transporter 1 , Copper , Epithelial Cells , Kidney Tubules, Proximal , Menkes Kinky Hair Syndrome , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Copper/metabolism , Copper/toxicity , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Gene Expression , Kidney Tubules, Proximal/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Menkes Kinky Hair Syndrome/etiology , Menkes Kinky Hair Syndrome/genetics , Menkes Kinky Hair Syndrome/metabolism , Mice , Protein Transport/genetics , Protein Transport/physiology , RNA, Messenger/metabolism , SLC31 Proteins/genetics , SLC31 Proteins/metabolism
4.
Int J Mol Sci ; 21(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260507

ABSTRACT

Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.


Subject(s)
Copper/metabolism , Gonads/metabolism , Homeostasis , Spermatogenesis , Animals , Biological Transport , Germ Cells/cytology , Germ Cells/metabolism , Humans , Male
5.
Int J Mol Sci ; 21(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092142

ABSTRACT

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Subject(s)
Heme Oxygenase-1/deficiency , Hemolysis , Iron/metabolism , Kidney/metabolism , Renal Insufficiency/metabolism , Anemia/blood , Anemia/therapy , Animals , Animals, Newborn , Erythrocyte Count , Female , Heme/metabolism , Heme Oxygenase-1/genetics , Iron/urine , Kidney/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Renal Insufficiency/genetics , Renal Insufficiency/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...