Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Sheng Wu Gong Cheng Xue Bao ; 24(12): 2022-6, 2008 Dec.
Article in Chinese | MEDLINE | ID: mdl-19306570

ABSTRACT

Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the bioprocess step and in downstream processing, high prices for fossil fuels and low prices for fermentable sugar. We strongly recommend to develop an integrated White Biotechnology strategy taking into account these four core requirements and other important accompanying activities.


Subject(s)
Chemical Industry , Conservation of Energy Resources , Industrial Microbiology/trends , Chemical Industry/economics , Chemical Industry/trends
2.
Environ Sci Technol ; 41(22): 7915-21, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-18075108

ABSTRACT

The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.


Subject(s)
Biotechnology/methods , Carbon Dioxide/chemistry , Agriculture , Biomass , Carbohydrates/chemistry , Chemical Industry , Climate , Conservation of Energy Resources , Conservation of Natural Resources , Energy-Generating Resources , Environment , Fermentation , Fossil Fuels , Gases , Greenhouse Effect , Industry
3.
Appl Biochem Biotechnol ; 136(3): 361-88, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17625239

ABSTRACT

Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 euro/t and 400 euro/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20-50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.


Subject(s)
Biotechnology/methods , Biotechnology/trends , Chemical Industry/trends , Biotechnology/economics , Carbohydrates/chemistry , Carbohydrates/economics , Chemical Industry/economics , Fermentation , Petroleum/classification , Petroleum/economics , Phthalic Acids/chemistry , Phthalic Acids/economics , Propylene Glycols/chemistry , Propylene Glycols/economics , Succinic Acid/chemistry , Succinic Acid/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...