Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(10): 6631-6638, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38695058

ABSTRACT

This article is a history of an industrial-academic partnership that started almost two decades ago and details the evolution of a relationship between a small academic research group and a spin-out company located in Portugal. Their activities have ranged from the development of new metal-based catalytic systems for asymmetric epoxidations, allylic alkylations, and arylations to the development of novel cinchona-based organocatalysts for asymmetric hydrosilylations and Michael additions. Current common interests are centered on the development of novel chiral Natural Deep Eutectic Solvent systems, which they are investigating in different types of reaction systems.

2.
Sci Rep ; 14(1): 4301, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383687

ABSTRACT

Essential tremor (ET) amplitude is modulated by visual feedback during target driven movements and in a grip force task. It has not been examined yet whether visual feedback exclusively modulates target force tremor amplitude or if other afferent inputs like auditory sensation has a modulatory effect on tremor amplitude as well. Also, it is unknown whether the enhanced sensory feedback causes an increase of arousal in persons with ET (p-ET). We hypothesized that (1) amplitude of tremor is modulated by variation of auditory feedback in the absence of visual feedback in a force tremor paradigm; (2) increase of tremor amplitude coincides with pupillary size as a measure of arousal. 14 p-ET and 14 matched healthy controls (HC) conducted a computer-based experiment in which they were asked to match a target force on a force sensor using their thumb and index finger. The force-induced movement was fed back to the participant visually, auditory or by a combination of both. Results showed a comparable deviation from the target force (RMSE) during the experiment during all three sensory feedback modalities. The ANOVA revealed an effect of the high vs. low feedback condition on the tremor severity (Power 4-12 Hz) for the visual- and also for the auditory feedback condition in p-ET. Pupillometry showed a significantly increased pupil diameter during the auditory involved high feedback conditions compared to the low feedback conditions in p-ET. Our findings suggest that action tremor in ET is firstly modulated not only by visual feedback but also by auditory feedback in a comparable manner. Therefore, tremor modulation seems to be modality independent. Secondly, high feedback was associated with a significant pupil dilation, possibly mirroring an increased arousal/perceived effort.


Subject(s)
Essential Tremor , Tremor , Humans , Feedback, Sensory , Movement , Fingers
3.
Brain Topogr ; 37(2): 329-342, 2024 03.
Article in English | MEDLINE | ID: mdl-38228923

ABSTRACT

Microstate sequences summarize the changing voltage patterns measured by electroencephalography, using a clustering approach to reduce the high dimensionality of the underlying data. A common approach is to restrict the pattern matching step to local maxima of the global field power (GFP) and to interpolate the microstate fit in between. In this study, we investigate how the anesthetic propofol affects microstate sequence periodicity and predictability, and how these metrics are changed by interpolation. We performed two frequency analyses on microstate sequences, one based on time-lagged mutual information, the other based on Fourier transform methodology, and quantified the effects of interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz (alpha) rhythms, and the Fourier approach demonstrated that all five microstate classes followed this frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed in non-interpolated microstate sequences and were masked by smoothing effects of interpolation. Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under propofol, whereas Shannon entropy did not change significantly. In moderate sedation, active information storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were observed in non-interpolated sequences, but no changes were observed between sedation levels. All changes occurred while subjects were able to perform an auditory perception task. In summary, we show that low dose propofol reversibly increases the randomness of microstate sequences and attenuates microstate oscillations without correlation to cognitive task performance. Microstate dynamics between GFP peaks reflect physiological processes that are not accessible in interpolated sequences.


Subject(s)
Brain , Propofol , Humans , Brain/physiology , Electroencephalography , Alpha Rhythm , Cluster Analysis
4.
Brain Topogr ; 37(2): 296-311, 2024 03.
Article in English | MEDLINE | ID: mdl-37751054

ABSTRACT

EEG microstate sequence analysis quantifies properties of ongoing brain electrical activity which is known to exhibit complex dynamics across many time scales. In this report we review recent developments in quantifying microstate sequence complexity, we classify these approaches with regard to different complexity concepts, and we evaluate excess entropy as a yet unexplored quantity in microstate research. We determined the quantities entropy rate, excess entropy, Lempel-Ziv complexity (LZC), and Hurst exponents on Potts model data, a discrete statistical mechanics model with a temperature-controlled phase transition. We then applied the same techniques to EEG microstate sequences from wakefulness and non-REM sleep stages and used first-order Markov surrogate data to determine which time scales contributed to the different complexity measures. We demonstrate that entropy rate and LZC measure the Kolmogorov complexity (randomness) of microstate sequences, whereas excess entropy and Hurst exponents describe statistical complexity which attains its maximum at intermediate levels of randomness. We confirmed the equivalence of entropy rate and LZC when the LZ-76 algorithm is used, a result previously reported for neural spike train analysis (Amigó et al., Neural Comput 16:717-736, https://doi.org/10.1162/089976604322860677 , 2004). Surrogate data analyses prove that entropy-based quantities and LZC focus on short-range temporal correlations, whereas Hurst exponents include short and long time scales. Sleep data analysis reveals that deeper sleep stages are accompanied by a decrease in Kolmogorov complexity and an increase in statistical complexity. Microstate jump sequences, where duplicate states have been removed, show higher randomness, lower statistical complexity, and no long-range correlations. Regarding the practical use of these methods, we suggest that LZC can be used as an efficient entropy rate estimator that avoids the estimation of joint entropies, whereas entropy rate estimation via joint entropies has the advantage of providing excess entropy as the second parameter of the same linear fit. We conclude that metrics of statistical complexity are a useful addition to microstate analysis and address a complexity concept that is not yet covered by existing microstate algorithms while being actively explored in other areas of brain research.


Subject(s)
Brain , Electroencephalography , Humans , Electroencephalography/methods , Brain Mapping/methods , Sleep , Algorithms
5.
J Org Chem ; 87(4): 1898-1924, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-34570501

ABSTRACT

Transition-metal-catalyzed asymmetric reactions have been a powerful tool in organic synthesis for many years. The design of chiral ligands with the right configuration is fundamental to induce high regio- and stereoselectivity to catalytic reactions and to achieve high turnover numbers and high yields. A challenge is the control of prochiral centers with similar electronic properties in a similar steric environment within the same molecule. Over the last 10 years, a range of novel rigid C-stereogenic chiral phosphine ligands has been developed and successfully applied in various types of asymmetric transformations. Many of these ligands are of a di-, tri-, or multidentate nature. The purpose of this Perspective is to highlight recent synthetic achievements (since 2010) with spiro-phosphines and other rigid phosphines and discuss some mechanistic aspects of the catalytic reactions.

6.
J Med Chem ; 53(9): 3502-16, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20380377

ABSTRACT

The inhibition of LTB(4) binding to and activation of G-protein-coupled receptors BLT1 and BLT2 is the premise of a treatment for several inflammatory diseases. In a lead optimization effort starting with the leukotriene B(4) (LTB(4)) receptor antagonist (2), members of a series of 3,5-diarylphenyl ethers were found to be highly potent inhibitors of LTB(4) binding to BLT1 and BLT2 receptors, with varying levels of selectivity depending on the substitution. In addition, compounds 33 and 38 from this series have good in vitro ADME properties, good oral bioavailability, and efficacy after oral delivery in guinea pig LTB(4) and nonhuman primate allergen challenge models. Further profiling in a rat non-GLP toxicity experiment provided the rationale for differentiation and selection of one compound (33) for clinical development.


Subject(s)
Drug Discovery , Leukotriene Antagonists/chemistry , Phenyl Ethers/pharmacology , Receptors, Leukotriene B4/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Guinea Pigs , HL-60 Cells , Humans , Leukotriene Antagonists/pharmacology , Phenyl Ethers/chemistry , Primates , Protein Binding , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Leukotriene B4/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 19(20): 5950-3, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19762236
8.
Bioorg Med Chem Lett ; 19(20): 5898-901, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19733066

ABSTRACT

A pharmacophore mapping approach, derived from previous experience of PIKK family enzymes, was used to identify a hit series of selective inhibitors of the mammalian target of rapamycin (mTOR). Subsequent refinement of the SAR around this hit series based on a tri-substituted triazine scaffold has led to the discovery of potent and selective inhibitors of mTOR.


Subject(s)
Antineoplastic Agents/chemistry , Morpholines/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Pyrimidines/chemistry , Triazines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Morpholines/chemical synthesis , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship , TOR Serine-Threonine Kinases , Triazines/chemical synthesis , Triazines/pharmacology
9.
Chem Commun (Camb) ; (9): 1128-9, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15116218

ABSTRACT

Double asymmetric induction as a mechanistic probe indicates that, for the conjugate addition of (R)- and (S)-lithium N-benzyl-N--alpha-methylbenzylamide to (S)-3'-phenylprop-2'-enoyl-4-benzyloxazolidinone, the reactive conformation of the N-acyl oxazolidinone is the anti-s-cis form, facilitating the asymmetric synthesis of a pseudotripeptide.


Subject(s)
Oligopeptides/chemical synthesis , Amino Acids/chemistry , Lithium Compounds/chemistry , Molecular Conformation , Oligopeptides/chemistry , Oxazolidinones/chemical synthesis , Oxazolidinones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...