Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 139(36): 12704-12709, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28806074

ABSTRACT

Radical templation centered around a heterotrisradical tricationic inclusion complex DB•+⊂DAPQT2(•+), assembled from an equimolar mixture of a disubstituted 4,4'-bipyridinium radical cation (DB•+) and an asymmetric cyclophane bisradical dication (DAPQT2(•+)), affords a symmetric [2]catenane (SC·7PF6) and an asymmetric [2]catenane (AC·7PF6) on reaction of the 1:1 complex with diazapyrene and bipyridine, respectively. Both these highly charged [2]catenanes have been isolated as air-stable monoradicals and characterized by EPR spectroscopy. X-ray crystallography suggests that the unpaired electrons are delocalized in each case across two inner 4,4'-bipyridinium (BIPY2+) units forming a mixed-valence (BIPY2)•3+ state inside both [2]catenanes, an observation which is in good agreement with spin-density calculations using density functional theory. Electrochemical studies indicate that by replacing the BIPY2+ units in homo[2]catenane HC•7+-composed of two mechanically interlocked cyclobis(paraquat-p-phenylene) rings-with "zero", one, and two more highly conjugated diazapyrenium dication (DAP2+) units, respectively, a consecutive series of five, six, and seven redox states can be accessed in the resulting SC·7PF6 (0, 4+, 6+, 7+, and 8+), HC·7PF6 (0, 2+, 4+, 6+, 7+, and 8+), and AC·7PF6 (0, 1+, 2+, 4+, 6+, 7+, and 8+), respectively. These unique [2]catenanes present a promising prototype for the fabrication of high-density data memories.

2.
J Am Chem Soc ; 139(19): 6635-6643, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28437104

ABSTRACT

Organic rechargeable batteries, composed of redox-active molecules, are emerging as candidates for the next generation of energy storage materials because of their large specific capacities, cost effectiveness, and the abundance of organic precursors, when compared with conventional lithium-ion batteries. Although redox-active molecules often display multiple redox states, precise control of a molecule's redox potential, leading to a single output voltage in a battery, remains a fundamental challenge in this popular field of research. By combining macrocyclic chemistry with density functional theory calculations (DFT), we have identified a structural motif that more effectively delocalizes electrons during lithiation events in battery operations-namely, through-space electron delocalization in triangular macrocyclic molecules that exhibit a single well-defined voltage profile-compared to the discrete multiple voltage plateaus observed for a homologous macrocyclic dimer and an acyclic derivative of pyromellitic diimide (PMDI). The triangular macrocycle, incorporating three PMDI units in close proximity to one another, exhibits a single output voltage at 2.33 V, compared with two peaks at (i) 2.2 and 1.95-1.60 V for reduction and (ii) 1.60-1.95 and 2.37 V for oxidation of the acyclic PMDI derivative. By investigating the two cyclic derivatives with different conformational dispositions of their PMDI units and the acyclic PMDI derivative, we identified noticeable changes in interactions between the PMDI units in the two cyclic derivatives under reducing conditions, as determined by differential pulse voltammetry, solution-state spectroelectrochemistry, and variable-temperature UV-Vis spectra. The numbers and relative geometries of the PMDI units are found to alter the voltage profile of the active materials significantly during galvanostatic measurements, resulting in a desirable single plateau for the triangular macrocycle. The present investigation reveals that understanding and controlling the relative conformational dispositions of redox-active units in macrocycles are key to achieving high energy density and long cycle-life electrodes for organic rechargeable batteries.

3.
J Am Chem Soc ; 138(18): 5968-77, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27070768

ABSTRACT

Designing small-molecule organic redox-active materials, with potential applications in energy storage, has received considerable interest of late. Herein, we report on the synthesis, characterization, and application of two rigid chiral triangles, each of which consist of non-identical pyromellitic diimide (PMDI) and naphthalene diimide (NDI)-based redox-active units. (1)H and (13)C NMR spectroscopic investigations in solution confirm the lower symmetry (C2 point group) associated with these two isosceles triangles. Single-crystal X-ray diffraction analyses reveal their rigid triangular prism-like geometries. Unlike previously investigated equilateral triangle containing three identical NDI subunits, both isosceles triangles do not choose to form one-dimensional supramolecular nanotubes by dint of [C-H···O] interaction-driven columnar stacking. The rigid isosceles triangle, composed of one NDI and two PMDI subunits, forms-in the presence of N,N-dimethylformamide-two different types of intermolecular NDI-NDI and NDI-PMDI π-π stacked dimers with opposite helicities in the solid state. Cyclic voltammetry reveals that both isosceles triangles can accept reversibly up to six electrons. Continuous-wave electron paramagnetic resonance and electron-nuclear double-resonance spectroscopic investigations, supported by density functional theory calculations, on the single-electron reduced radical anions of the isosceles triangles confirm the selective sharing of unpaired electrons among adjacent redox-active NDI subunit(s) within both molecules. The isosceles triangles have been employed as electrode-active materials in organic rechargeable lithium-ion batteries. The evaluation of the structure-performance relationships of this series of diimide-based triangles reveals that the increase in the number of NDI subunits, replacing PMDI ones, within the molecules improves the electrochemical cell performance of the batteries.

5.
Chemistry ; 21(9): 3550-5, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25604262

ABSTRACT

A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M).


Subject(s)
Naphthalenes/chemistry , Catalysis , Fluorescence , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Quantum Theory , Stereoisomerism , Titanium/chemistry
6.
Chem Soc Rev ; 44(2): 500-14, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-24927358

ABSTRACT

In this review, we describe the construction of gated molecular baskets, discuss their mechanism of action in regulating the exchange of guests and illustrate the potential of these concave hosts to act as catalysts for controlling chemical reactions. Importantly, a number of computational and experimental studies have suggested that gated baskets ought to unfold their gates at the rim for permitting the passage of guests to/from their inner space. These dynamic hosts are therefore offered as useful models for investigating the process of gating in artificial systems. Furthermore, gated baskets should permit examining the benefit of controlling the rate by which reactants access a gated catalyst for promoting chemical reactions occurring in its confined space.

7.
Angew Chem Int Ed Engl ; 52(43): 11313-6, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24000050

ABSTRACT

Up for grabs: A modular receptor comprises a hexaazatriphenylene "platform" and three imide residues on its concave side carrying flexible alkane chains. The chains not only populate the host's cavity but can also extend and can grab an appropriately sized and shaped guest in solution.

8.
J Org Chem ; 78(7): 2984-91, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23445206

ABSTRACT

We have developed a novel synthetic method that enables the preparation of functional derivatives of heptiptycene, i.e., cavitands with two juxtaposed cavities. The homocoupling of bicyclic dibromoalkenes is promoted by Pd(OAc)2 (10%) in dioxane (100 °C) to give cyclotrimers in 27-77% yield under optimized reaction conditions (Ph3P, K2CO3, n-Bu4NBr, N2, 4 Å MS). These dual-cavity baskets show a strong π → π* absorption at 241 nm (ε = 939,000 M(-1) cm(-1)), along with a subsequent fluorescence emission at 305 nm.


Subject(s)
Anthracenes/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydrocarbons, Brominated/chemistry , Anthracenes/chemistry , Models, Molecular , Molecular Conformation
10.
Beilstein J Org Chem ; 8: 90-9, 2012.
Article in English | MEDLINE | ID: mdl-22423275

ABSTRACT

We used dynamic (1)H NMR spectroscopic methods to examine the kinetics and thermodynamics of CH(3)CCl(3) (2) entering and leaving the gated molecular basket 1. We found that the encapsulation is first-order in basket 1 and guest 2, while the decomplexation is zeroth-order in the guest. Importantly, the interchange mechanism in which a molecule of CH(3)CCl(3) directly displaces the entrapped CH(3)CCl(3) was not observed. Furthermore, the examination of the additivity of free energies characterizing the encapsulation process led to us to deduce that the revolving motion of the gates and in/out trafficking of guests is synchronized, yet still a function of the affinity of the guest for occupying the basket: Specifically, the greater the affinity of the guest for occupying the basket, the less effective the gates are in "sweeping" the guest as the gates undergo their revolving motion.

11.
Chem Soc Rev ; 40(3): 1609-22, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21038057

ABSTRACT

This critical review describes mechanisms by which guest molecules enter and depart molecular capsules. The discussion focuses on presenting gated molecular encapsulation, i.e., trapping and releasing of guest molecules at rates that are controlled by conformational changes in the host's structure. Developing quantitative rules that describe the gating are, at present, a matter of scientific curiosity but could play an important role in building more effective catalysts, drug-delivery devices or membranes (105 references).

SELECTION OF CITATIONS
SEARCH DETAIL
...