Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37999284

ABSTRACT

In this work, we explored a highly robust and unique Physical Unclonable Function (PUF) based on the stochastic assembly of single-walled Carbon NanoTubes (CNTs) integrated within a wafer-level technology. Our work demonstrated that the proposed CNT-based PUFs are exceptionally robust with an average fractional intra-device Hamming distance well below 0.01 both at room temperature and under varying temperatures in the range from 23 ∘C to 120 ∘C. We attributed the excellent heat tolerance to comparatively low activation energies of less than 40 meV extracted from an Arrhenius plot. As the number of unstable bits in the examined implementation is extremely low, our devices allow for a lightweight and simple error correction, just by selecting stable cells, thereby diminishing the need for complex error correction. Through a significant number of tests, we demonstrated the capability of novel nanomaterial devices to serve as highly efficient hardware security primitives.

2.
ACS Appl Mater Interfaces ; 12(24): 27461-27466, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32436374

ABSTRACT

Carbon nanotube (CNT)-based field-effect transistors have demonstrated great potential for high-frequency (HF) analog transceiver electronics. Despite significant advancements, one of the remaining challenges is the optimization of the device architecture for obtaining the highest possible speed and linearity. While most studies so far have concentrated on symmetrical top gated FET devices, we report on the impact of the device architecture on their HF performance. Based on a wafer-level nanotechnology platform and device simulations, transistors with a buried gate having different widths and positions in the FET channel have been fabricated. Analysis of several FETs with nonsymmetrical gate electrode location in the channel revealed a speed increase of up to 18% measured by the external transit frequency fT and maximum frequency of oscillation fmax. Although only randomly oriented CNTs with a density of 25 CNTs/µm and 280 nm long channels were used in this study, transit frequencies up to 14 GHz were obtained.

3.
Nanotechnology ; 29(3): 035203, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29176051

ABSTRACT

The electrical transport properties of short-channel transistors based on single-walled carbon nanotubes (CNT) are significantly affected by bundling along with solution processing. We report that especially high off currents of CNT transistors are not only related to the incorporation of metallic CNTs but also to the incorporation of CNT bundles. By applying device passivation with poly(4-vinylpyridine), the impact of CNT bundling on the device performance can be strongly reduced due to increased gate efficiency as well as reduced oxygen and water-induced p-type doping, boosting essential field-effect transistor performance parameters by several orders of magnitude. Moreover, this passivation approach allows the hysteresis and threshold voltage of CNT transistors to be tuned.

4.
Nanotechnology ; 27(43): 435203, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27659173

ABSTRACT

For an industrial realization of devices based on single-walled carbon nanotube (SWCNTs) such as field-effect transistors (FETs) it becomes increasingly important to consider technological aspects such as intrinsic device structure, integration process controllability as well as yield. From the perspective of a wafer-level integration technology, the influence of SWCNT length on the performance of short-channel CNT-FETs is demonstrated by means of a statistical and comparative study. Therefore, a methodological development of a length separation process based on size-exclusion chromatography was conducted in order to extract well-separated SWCNT dispersions with narrowed length distribution. It could be shown that short SWCNTs adversely affect integrability and reproducibility, underlined by a 25% decline of the integration yield with respect to long SWCNTs. Furthermore, it turns out that the significant changes in electrical performance are directly linked to a SWCNT chain formation in the transistor channel. In particular, CNT-FETs with long SWCNTs outperform reference and short SWCNTs with respect to hole mobility and subthreshold controllability by up to 300% and up to 140%, respectively. As a whole, this study provides a statistical and comparative analysis towards chain-less CNT-FETs fabricated with a wafer-level technology.

5.
Nanoscale Res Lett ; 8(1): 24, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23311434

ABSTRACT

We report on and emphasize the versatility of conductive atomic force microscopy in characterizing vertically aligned carbon nanotubes (CNTs) aimed to be used in via interconnect technology. The study is conducted on multi-walled CNT arrays vertically grown on a copper-based metal line. Voltage-dependent current mapping and current-voltage characteristics recorded down to single CNT allow for a comprehensive insight into the electric behaviour of the hybrid structure.

6.
Nanoscale Res Lett ; 7(1): 682, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23259903

ABSTRACT

During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44-50, 2012). This has prompted the application of advanced characterization techniques based on combined atomic force microscopy (AFM) and Raman spectroscopy studies (Mureau et al. Electrophoresis 29:2266-2271, 2008). In this context, we use confocal Raman microscopy and current sensing atomic force microscopy (CS-AFM) to study phonons and the electronic transport in semiconducting SWCNTs, which were aligned between palladium electrodes using dielectrophoresis (Kuzyk Electrophoresis 32:2307-2313, 2011). Raman imaging was performed in the region around the electrodes on the suspended CNTs using several laser excitation wavelengths. Analysis of the G+/G- splitting in the Raman spectra (Sgobba and Guldi Chem Soc Rev 38:165-184, 2009) shows CNT diameters of 2.5 ± 0.3 nm. Neither surface modification nor increase in defect density or stress at the CNT-electrode contact could be detected, but rather a shift in G+ and G- peak positions in regions with high CNT density between the electrodes. Simultaneous topographical and electrical characterization of the CNT transistor by CS-AFM confirms the presence of CNT bundles having a stable electrical contact with the transistor electrodes. For a similar load force, reproducible current-voltage (I/V) curves for the same CNT regions verify the stability of the electrical contact between the nanotube and the electrodes as well as the nanotube and the AFM tip over different experimental sessions using different AFM tips. Strong variations observed in the I/V response at different regions of the CNT transistor are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...