Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Anaesthesiol Scand ; 67(7): 869-876, 2023 08.
Article in English | MEDLINE | ID: mdl-37186094

ABSTRACT

BACKGROUND: Phenylephrine increases systemic- and pulmonary resistances and therefore may increase blood pressures at the expense of blood flow. Cardio-pulmonary bypass alters vasoreactivity and many patients exhibit chronotropic insufficiency after cardiac surgery. We aimed to describe the haemodynamic effects of phenylephrine infusion after cardiac surgery. METHODS: Patients in steady state after low-risk cardiac surgery received incremental infusion rates of phenylephrine up to 1.0 µg/kg/min with the aim of increasing systemic mean arterial blood pressure 20 mmHg. Invasive haemodynamic parameters, including pulmonary wedge pressures, were captured along with echocardiographic measures of biventricular function before, during phenylephrine infusion at target systemic blood pressure, and 20 min after phenylephrine discontinuation. RESULTS: Thirty patients were included. Phenylephrine increased mean arterial pressure increased from 78 (±9) mmHg to 98 (±10) mmHg with phenylephrine infusion. Also, pulmonary blood pressure as well as systemic- and pulmonary resistances increased. The ratio between systemic- and pulmonary artery resistances did not change statistically significantly (p = .59). Median cardiac output was 4.35 (interquartile range [IQR] 3.6-5.4) L/min at baseline and increased significantly with phenylephrine infusion (median Δcardiac output was 0.25 [IQR 0.1-0.6] L/min) (p = .012). Pulmonary artery wedge pressure increased from 10.2 (±3.0) mmHg to 11.9 (±3.4) mmHg (p < .001). This was accompanied by significant increases in central venous pressure. Phenylephrine infusion increased left ventricular end-diastolic volume from 105 (±46) mL to 119 (±44) mL (p < .001). All results of phenylephrine infusion were reversed with discontinuation. CONCLUSION: In haemodynamically stable patients after cardiac surgery, phenylephrine increased PVR and SVR, but did not change the PVR/SVR ratio. Phenylephrine increased biventricular filling pressures and left ventricular end-diastolic area. Consequently, CO increased as ejection fraction was maintained. These findings do not discourage the use of phenylephrine after low-risk cardiac surgery. REGISTRATION: clinicaltrial.gov (identifier NCT04419662).


Subject(s)
Cardiac Surgical Procedures , Hemodynamics , Humans , Blood Pressure , Cardiac Output , Phenylephrine/pharmacology , Pulmonary Wedge Pressure
2.
J Cardiothorac Vasc Anesth ; 36(5): 1326-1335, 2022 05.
Article in English | MEDLINE | ID: mdl-34419361

ABSTRACT

OBJECTIVE: The authors investigated the use of hepatic venous and right-heart ultrasound parameters in predicting cardiac surgery-associated acute kidney injury (AKI). DESIGN: This was a prospective, contextual, descriptive two-center study. Blood tests,clinical and ultrasound data were obtained preoperatively, and postoperative day one, and day four. The hepatic vein, inferior vena cava, and right-heart Doppler ultrasound parameters were obtained and analyzed. SETTING: The sites of the study were Johannesburg, South Africa, and Aarhus, Denmark. PARTICIPANTS: Adult patients who satisfied inclusion criteria, between August 2019 and January 2020, were included, with a total of 152 participants. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The median (interquartile range) age of patients was 68 (55-73) years, predominantly male, and the majority were hypertensive. Of 152 patients analyzed, 54 (35%) patients developed AKI. Among these, 37 (69%) were classified as Kidney Disease: Improving Global Outcomes (KDIGO) stage I, 11 (20%) as stage II, while six (11%) were stage III. Age (adjusted odds ratio [AOR] 1.05, 95% confidence interval [CI] 1.00-1.10 p = 0.031), The European System for Cardiac Operative Risk Evaluation (EuroSCORE) II (AOR 1.43, 95% CI 1.14-1.80, p = 0.005], and preoperative serum creatinine (AOR 1.04, 95% CI 1.01-1.08, p = 0.013) were predictive of AKI. Those who developed AKI had experienced longer cardiopulmonary bypass (CPB) times (p < 0.001). Preoperatively, hepatic vein S-wave measurements were significantly higher in patients with AKI (p < 0.05). On postoperative day one (D1), the hepatic vein flow ratios of patients with AKI were significantly decreased, driven by low S waves and high D waves, and accompanied by significantly elevated central venous pressure (CVP) levels. CVP levels on D1 postoperatively were predictive of AKI (AOR 1.31, 95% CI 1.11-1.55, p = 0.001). Measurements of right ventricular (RV) base, tricuspid annular plane excursion (TAPSE), and inferior vena cava were not associated with the development of AKI (p > 0.05). CONCLUSION: There was an association between the development of AKI and a decrease in hepatic flow ratios on D1, driven by low S-wave and high D-wave velocities. The presence of venous congestion was reflected by significantly elevated CVP values, which were independently associated with AKI on D1. RV base and TAPSE measurements were, however, not associated with AKI. These parameters may reflect perioperative circumstances, including prolonged CPB times and potential fluid management, which can be modified in this period.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/epidemiology , Adult , Aged , Cardiac Surgical Procedures/adverse effects , Female , Hepatic Veins/diagnostic imaging , Humans , Male , Postoperative Complications/diagnostic imaging , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prospective Studies , Retrospective Studies , Risk Factors , South Africa
3.
Sci Rep ; 11(1): 19738, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611205

ABSTRACT

Acute kidney injury (AKI) is a frequent and severe complication in cardiac surgery. Normal renal function is dependent on adequate renal perfusion, which may be altered in the perioperative period. Renal perfusion can be assessed with Doppler measurement. We aimed to determine the association between Doppler measurements of renal perfusion and the development of AKI. This was a prospective, observational study of 100 patients with ≥ one risk factor for postoperative AKI undergoing open-heart surgery. Doppler ultrasound examinations were performed before surgery and on the first and fourth postoperative day. AKI was defined according to the KDIGO criteria and subdivided into mild (KDIGO stage 1) and severe AKI (KDIGO stage 2 + 3). Thirty-three patients developed AKI, 25 developed mild and eight developed severe AKI. Abnormal renal venous flow pattern on the first postoperative day was significantly associated with the development of severe AKI (OR 8.54 (95% CI 1.01; 72.2), P = 0.046), as were portal pulsatility fraction (OR 1.07 (95% CI 1.02; 1.13), P = 0.005). Point-of-care Doppler ultrasound measurements of renal perfusion are associated with the development of AKI after cardiac surgery. Renal and portal Doppler ultrasonography can be used to identify patients at high risk or very low risk of AKI after cardiac surgery.


Subject(s)
Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Cardiac Surgical Procedures/adverse effects , Kidney/blood supply , Kidney/diagnostic imaging , Perioperative Care , Ultrasonography, Doppler , Comorbidity , Humans , Portal Vein/diagnostic imaging , Prospective Studies , Renal Circulation
SELECTION OF CITATIONS
SEARCH DETAIL
...