Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 27(7): 1306-1315, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28434213

ABSTRACT

DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is one of the organic synthetic pesticides that has many negative effects for human health and the environment. The purpose of this study was to investigate the synergistic effect of mixed cutures of white-rot fungus, Pleurotus ostreatus, and biosurfactant-producing bacteria, Pseudomonas aeruginosa and Bacillus subtilis, on DDT biodegradation. Bacteria were added into the P. ostreatus culture (mycelial wet weight on average by 8.53 g) in concentrations of 1, 3, 5, and 10 ml (1 ml ≈ 1.25 × 109 bacteria cells/ml culture). DDT was degraded to approximately 19% by P. ostreatus during the 7-day incubation period. The principal result of this study was that the addition of 3 ml of P. aeruginosa into P. ostreatus culture gave the highest DDT degradation rate (approximately 86%) during the 7-day incubation period. This mixed culture combination of the fungus and bacteria also gave the best ratio of optimization of 1.91. DDD (1,1-dichloro-2,2-bis(4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl) ethylene) were detected as metabolic products from the DDT degradation by P. ostreatus and P. aeruginosa. The results of this study indicate that P. aeruginosa has a synergistic relationship with P. ostreatus and can be used to optimize the degradation of DDT by P. ostreatus.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , DDT/metabolism , Pleurotus/metabolism , Surface-Active Agents/metabolism , Bacillus subtilis/metabolism , Pseudomonas aeruginosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...