Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz. j. med. biol. res ; 45(8): 753-762, Aug. 2012. ilus, tab
Article in English | LILACS | ID: lil-643649

ABSTRACT

The most disabling aspect of human peripheral nerve injuries, the majority of which affect the upper limbs, is the loss of skilled hand movements. Activity-induced morphological and electrophysiological remodeling of the neuromuscular junction has been shown to influence nerve repair and functional recovery. In the current study, we determined the effects of two different treatments on the functional and morphological recovery after median and ulnar nerve injury. Adult Wistar male rats weighing 280 to 330 g at the time of surgery (N = 8-10 animals/group) were submitted to nerve crush and 1 week later began a 3-week course of motor rehabilitation involving either "skilled" (reaching for small food pellets) or "unskilled" (walking on a motorized treadmill) training. During this period, functional recovery was monitored weekly using staircase and cylinder tests. Histological and morphometric nerve analyses were used to assess nerve regeneration at the end of treatment. The functional evaluation demonstrated benefits of both tasks, but found no difference between them (P > 0.05). The unskilled training, however, induced a greater degree of nerve regeneration as evidenced by histological measurement (P < 0.05). These data provide evidence that both of the forelimb training tasks used in this study can accelerate functional recovery following brachial plexus injury.


Subject(s)
Animals , Male , Rats , Nerve Regeneration/physiology , Peripheral Nerve Injuries/rehabilitation , Physical Conditioning, Animal/methods , Recovery of Function/physiology , Sciatic Nerve/injuries , Ulnar Nerve/injuries , Peripheral Nerve Injuries/physiopathology , Physical Conditioning, Animal/physiology , Rats, Wistar , Treatment Outcome
2.
Braz J Med Biol Res ; 45(8): 753-62, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22584636

ABSTRACT

The most disabling aspect of human peripheral nerve injuries, the majority of which affect the upper limbs, is the loss of skilled hand movements. Activity-induced morphological and electrophysiological remodeling of the neuromuscular junction has been shown to influence nerve repair and functional recovery. In the current study, we determined the effects of two different treatments on the functional and morphological recovery after median and ulnar nerve injury. Adult Wistar male rats weighing 280 to 330 g at the time of surgery (N = 8-10 animals/group) were submitted to nerve crush and 1 week later began a 3-week course of motor rehabilitation involving either "skilled" (reaching for small food pellets) or "unskilled" (walking on a motorized treadmill) training. During this period, functional recovery was monitored weekly using staircase and cylinder tests. Histological and morphometric nerve analyses were used to assess nerve regeneration at the end of treatment. The functional evaluation demonstrated benefits of both tasks, but found no difference between them (P > 0.05). The unskilled training, however, induced a greater degree of nerve regeneration as evidenced by histological measurement (P < 0.05). These data provide evidence that both of the forelimb training tasks used in this study can accelerate functional recovery following brachial plexus injury.


Subject(s)
Nerve Regeneration/physiology , Peripheral Nerve Injuries/rehabilitation , Physical Conditioning, Animal/methods , Recovery of Function/physiology , Sciatic Nerve/injuries , Ulnar Nerve/injuries , Animals , Male , Peripheral Nerve Injuries/physiopathology , Physical Conditioning, Animal/physiology , Rats , Rats, Wistar , Treatment Outcome
3.
J Anat ; 208(5): 565-75, 2006 May.
Article in English | MEDLINE | ID: mdl-16637879

ABSTRACT

The aim of the present study was to describe the ultrastructure of neurons (from eight animals) and to analyse the synaptic terminal distribution (from two animals) in the posterodorsal subnucleus of the medial amygdala (MePD) of adult male rats. Using transmission electron microscopy, it was possible to identify many spiny and aspiny dendrites, unmyelinated axonal bundles, single axonal processes, a few myelinated axons, blood vessels and glial processes in the neuropil. Axodendritic synapses were the most frequently observed (67.5%), appearing to be of either the inhibitory or the excitatory types. The presynaptic region contained round or flattened vesicles that occurred either singly or with dense-cored vesicles (DCVs). The dendrites often received many synapses on a single shaft, and axon terminals displayed synaptic contacts with one or more postsynaptic structures. Dendritic spines showed different morphologies and the synapses on them (23.1%) formed a single and apparently excitatory synaptic contact with round, electron-lucid vesicles alone or, less frequently, with DCVs. Inhibitory and excitatory axosomatic synapses (8.2%) and excitatory axoaxonic synapses (1.2%) were also identified. The present report provides new findings relevant to the study of the MePD cellular organization and could be combined with other morphological data in order to reveal the functional activity of this area in male rats.


Subject(s)
Amygdala/ultrastructure , Neurons/ultrastructure , Presynaptic Terminals/ultrastructure , Animals , Male , Microscopy, Electron , Microtomy , Rats , Rats, Wistar
4.
Braz. j. med. biol. res ; 34(9): 1191-1195, Sept. 2001. graf
Article in English | LILACS | ID: lil-290409

ABSTRACT

Neonatal handling has long-lasting effects on behavior and stress reactivity. The purpose of the present study was to investigate the effect of neonatal handling on the number of dopaminergic neurons in the hypothalamic nuclei of adult male rats as part of a series of studies that could explain the long-lasting effects of neonatal stimulation. Two groups of Wistar rats were studied: nonhandled (pups were left undisturbed, control) and handled (pups were handled for 1 min once a day during the first 10 days of life). At 75-80 days, the males were anesthetized and the brains were processed for immunohistochemistry. An anti-tyrosine hydroxylase antibody and the avidin-biotin-peroxidase method were used. Tyrosine hydroxylase-immunoreactive (TH-IR) neurons were counted bilaterally in the arcuate, paraventricular and periventricular nuclei of the hypothalamus in 30-æm sections at 120-æm intervals. Neonatal handling did not change the number of TH-IR neurons in the arcuate (1021 + or - 206, N = 6; 1020 + or - 150, N = 6; nonhandled and handled, respectively), paraventricular (584 + or - 85, N = 8; 682 + or - 62, N = 9) or periventricular (743 + or - 118, N = 7; 990 + or - 158, N = 7) nuclei of the hypothalamus. The absence of an effect on the number of dopaminergic cells in the hypothalamus indicates that the reduction in the amount of neurons induced by neonatal handling, as shown by other studies, is not a general phenomenon in the brain


Subject(s)
Animals , Male , Female , Rats , Behavior, Animal/physiology , Handling, Psychological , Hypothalamus, Anterior/physiology , Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism , Animals, Newborn , Anterior Hypothalamic Nucleus/enzymology , Anterior Hypothalamic Nucleus/physiology , Dopamine/physiology , Hypothalamus, Anterior/enzymology , Neurons/immunology , Physical Stimulation , Rats, Wistar , Stress, Psychological , Tyrosine 3-Monooxygenase/immunology
5.
Braz J Med Biol Res ; 34(9): 1191-5, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11514844

ABSTRACT

Neonatal handling has long-lasting effects on behavior and stress reactivity. The purpose of the present study was to investigate the effect of neonatal handling on the number of dopaminergic neurons in the hypothalamic nuclei of adult male rats as part of a series of studies that could explain the long-lasting effects of neonatal stimulation. Two groups of Wistar rats were studied: nonhandled (pups were left undisturbed, control) and handled (pups were handled for 1 min once a day during the first 10 days of life). At 75-80 days, the males were anesthetized and the brains were processed for immunohistochemistry. An anti-tyrosine hydroxylase antibody and the avidin-biotin-peroxidase method were used. Tyrosine hydroxylase-immunoreactive (TH-IR) neurons were counted bilaterally in the arcuate, paraventricular and periventricular nuclei of the hypothalamus in 30-microm sections at 120-microm intervals. Neonatal handling did not change the number of TH-IR neurons in the arcuate (1021 +/- 206, N = 6; 1020 +/- 150, N = 6; nonhandled and handled, respectively), paraventricular (584 +/- 85, N = 8; 682 +/- 62, N = 9) or periventricular (743 +/- 118, N = 7; 990 +/- 158, N = 7) nuclei of the hypothalamus. The absence of an effect on the number of dopaminergic cells in the hypothalamus indicates that the reduction in the amount of neurons induced by neonatal handling, as shown by other studies, is not a general phenomenon in the brain.


Subject(s)
Behavior, Animal/physiology , Handling, Psychological , Hypothalamus, Anterior/physiology , Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism , Animals , Animals, Newborn , Anterior Hypothalamic Nucleus/enzymology , Anterior Hypothalamic Nucleus/physiology , Dopamine/physiology , Female , Hypothalamus, Anterior/enzymology , Male , Neurons/immunology , Physical Stimulation , Rats , Rats, Wistar , Stress, Psychological , Tyrosine 3-Monooxygenase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...