Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4707, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948776

ABSTRACT

Chains of magnetic atoms with either strong spin-orbit coupling or spiral magnetic order which are proximity-coupled to superconducting substrates can host topologically non-trivial Majorana bound states. The experimental signature of these states consists of spectral weight at the Fermi energy which is spatially localized near the ends of the chain. However, topologically trivial Yu-Shiba-Rusinov in-gap states localized near the ends of the chain can lead to similar spectra. Here, we explore a protocol to disentangle these contributions by artificially augmenting a candidate Majorana spin chain with orbitally-compatible nonmagnetic atoms. Combining scanning tunneling spectroscopy with ab-initio and tight-binding calculations, we realize a sharp spatial transition between the proximity-coupled spiral magnetic order and the non-magnetic superconducting wire termination, with persistent zero-energy spectral weight localized at either end of the magnetic spiral. Our findings open a new path towards the control of the spatial position of in-gap end states, trivial or Majorana, via different chain terminations, and the realization of designer Majorana chain networks for demonstrating topological quantum computation.

2.
Nat Commun ; 10(1): 2565, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189872

ABSTRACT

Spins of single atoms adsorbed on substrates are promising building blocks for spintronics and quantum computation schemes. To process spin information and for increased magnetic stability, these spins have to be coupled to arrays. For a single atom, a high symmetry of the environment increases its spin stability. However, little is known about the role of the symmetry of the magnetic couplings in the arrays. Here, we study arrays of atomic spins coupled via Ruderman-Kittel-Kasuya-Yosida interaction, focusing on Dzyaloshinskii-Moriya and symmetric anisotropic exchange. We show that the high spin stability of a trimer can be remotely detected by a nearby atom, and how the Dzyaloshinskii-Moriya interaction leads to its destabilization. Adding more nearby atoms further destabilizes the trimer, due to a non-local effective transverse anisotropy originating in the symmetric anisotropic exchange. This transverse anisotropy can be quenched for highly symmetric structures, where the spin lifetime of the array increases drastically.

3.
Nat Commun ; 9(1): 4925, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451883

ABSTRACT

The original version of this Article contained an error in Fig. 3 in which Fig. 3b and Fig. 3e incorrectly duplicated Fig. 2a and Fig.2d, respectively. This has now been corrected in both the PDF and HTML versions of the Article.

4.
Nat Commun ; 9(1): 2853, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030446

ABSTRACT

Non-collinear spin states with unique rotational sense, such as chiral spin-spirals, are recently heavily investigated because of advantages for future applications in spintronics and information technology and as potential hosts for Majorana Fermions when coupled to a superconductor. Tuning the properties of such spin states, e.g., the rotational period and sense, is a highly desirable yet difficult task. Here, we experimentally demonstrate the bottom-up assembly of a spin-spiral derived from a chain of iron atoms on a platinum substrate using the magnetic tip of a scanning tunneling microscope as a tool. We show that the spin-spiral is induced by the interplay of the Heisenberg and Dzyaloshinskii-Moriya components of the Ruderman-Kittel-Kasuya-Yosida interaction between the iron atoms. The relative strengths and signs of these two components can be adjusted by the interatomic iron distance, which enables tailoring of the rotational period and sense of the spin-spiral.

5.
Rev Sci Instrum ; 89(3): 033902, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29604794

ABSTRACT

We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

6.
Nano Lett ; 18(3): 1978-1983, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29466854

ABSTRACT

Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

SELECTION OF CITATIONS
SEARCH DETAIL
...