Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Immunol ; 14: 1212551, 2023.
Article in English | MEDLINE | ID: mdl-38022583

ABSTRACT

Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects the elderly. An altered skin microbiota in BP was recently revealed. Accumulating evidence points toward a link between the gut microbiota and skin diseases; however, the gut microbiota composition of BP patients remains largely underexplored, with only one pilot study to date, with a very limited sample size and no functional profiling of gut microbiota. To thoroughly investigate the composition and function of the gut microbiota in BP patients, and explore possible links between skin conditions and gut microbiota, we here investigated the gut microbiota of 66 patients (81.8% firstly diagnosed) suffering from BP and 66 age-, sex-, and study center-matched controls (CL) with non-inflammatory skin diseases (132 total participants), using 16S rRNA gene and shotgun sequencing data. Decreased alpha-diversity and an overall altered gut microbial community is observed in BP patients. Similar trends are observed in subclassifications of BP patients, including first diagnoses and relapsed cases. Furthermore, we observe a set of BP disease-associated gut microbial features, including reduced Faecalibacterium prausnitzii and greater abundance of pathways related to gamma-aminobutyric acid (GABA) metabolism in BP patients. Interestingly, F. prausnitzii is a well-known microbiomarker of inflammatory diseases, which has been reported to be reduced in the gut microbiome of atopic dermatitis and psoriasis patients. Moreover, GABA plays multiple roles in maintaining skin health, including the inhibition of itching by acting as a neurotransmitter, attenuating skin lesions by balancing Th1 and Th2 levels, and maintaining skin elasticity by increasing the expression of type I collagen. These findings thus suggest that gut microbiota alterations present in BP may play a role in the disease, and certain key microbes and functions may contribute to the link between gut dysbiosis and BP disease activity. Further studies to investigate the underlying mechanisms of the gut-skin interaction are thus clearly warranted, which could aid in the development of potential therapeutic interventions.


Subject(s)
Gastrointestinal Microbiome , Pemphigoid, Bullous , Humans , Aged , Gastrointestinal Microbiome/physiology , RNA, Ribosomal, 16S/genetics , Disease Susceptibility , Pilot Projects , gamma-Aminobutyric Acid
2.
J Adv Res ; 44: 71-79, 2023 02.
Article in English | MEDLINE | ID: mdl-35581140

ABSTRACT

INTRODUCTION: Bullous pemphigoid (BP) is the most common autoimmune blistering disease. It predominately afflicts the elderly and is significantly associated with increased mortality. The observation of age-dependent changes in the skin microbiota as well as its involvement in other inflammatory skin disorders suggests that skin microbiota may play a role in the emergence of BP blistering. We hypothesize that changes in microbial diversity associated with BP might occur before the emergence of disease lesions, and thus could represent an early indicator of blistering risk. OBJECTIVES: The present study aims to investigate potential relationships between skin microbiota and BP and elaborate on important changes in microbial diversity associated with blistering in BP. METHODS: The study consisted of an extensive sampling effort of the skin microbiota in patients with BP and age- and sex-matched controls to analyze whether intra-individual, body site, and/or geographical variation correlate with changes in skin microbial composition in BP and/or blistering status. RESULTS: We find significant differences in the skin microbiota of patients with BP compared to that of controls, and moreover that disease status rather than skin biogeography (body site) governs skin microbiota composition in patients with BP. Our data reveal a discernible transition between normal skin and the skin surrounding BP lesions, which is characterized by a loss of protective microbiota and an increase in sequences matching Staphylococcus aureus, a known inflammation-promoting species. Notably, Staphylococcus aureus is ubiquitously associated with BP disease status, regardless of the presence of blisters. CONCLUSION: The present study suggests Staphylococcus aureus may be a key taxon associated with BP disease status. Importantly, we however find contrasting patterns in the relative abundances of Staphylococcus hominis and Staphylococcus aureus reliably discriminate between patients with BP and matched controls. This may serve as valuable information for assessing blistering risk and treatment outcomes in a clinical setting.


Subject(s)
Autoimmune Diseases , Microbiota , Pemphigoid, Bullous , Humans , Aged , Pemphigoid, Bullous/pathology , Pemphigoid, Bullous/therapy , Skin , Blister/pathology , Autoimmune Diseases/pathology
3.
Sci Rep ; 12(1): 15515, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109548

ABSTRACT

Anorexia nervosa (AN), a psychiatric condition defined by low body weight for age and height, is associated with numerous dermatological conditions. Yet, clinical observations report that patients with AN do not suffer from infectious skin diseases like those associated with primary malnutrition. Cell-mediated immunity appears to be amplified in AN; however, this proinflammatory state does not sufficiently explain the lower incidence of infections. Antimicrobial peptides (AMPs) are important components of the innate immune system protecting from pathogens and shaping the microbiota. In Drosophila melanogaster starvation precedes increased AMP gene expression. Here, we analyzed skin microbiota in patients with AN and age-matched, healthy-weight controls and investigated the influence of weight gain on microbial community structure. We then correlated features of the skin microbial community with psoriasin and RNase 7, two highly abundant AMPs in human skin, to clarify whether an association between AMPs and skin microbiota exists and whether such a relationship might contribute to the resistance to cutaneous infections observed in AN. We find significant statistical correlations between Shannon diversity and the highly abundant skin AMP psoriasin and bacterial load, respectively. Moreover, we reveal psoriasin significantly associates with Abiotrophia, an indicator for the healthy-weight control group. Additionally, we observe a significant correlation between an individual's body mass index and Lactobacillus, a microbial indicator of health. Future investigation may help clarify physiological mechanisms that link nutritional intake with skin physiology.


Subject(s)
Anorexia Nervosa , Microbiota , Animals , Humans , Antimicrobial Peptides , Drosophila melanogaster , S100 Calcium Binding Protein A7
4.
Microbiome ; 7(1): 133, 2019 09 14.
Article in English | MEDLINE | ID: mdl-31521200

ABSTRACT

BACKGROUND: The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. METHODS: In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. CONCLUSION: While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Metagenome/physiology , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Animals , Bacteria/classification , Bacteria/genetics , Databases, Genetic , Humans , Metagenome/genetics , Microbiota/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...