Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771233

ABSTRACT

In this study, six-arm star-shaped poly(N-vinylcaprolactam) (PNVCL) polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization were subjected to aminolysis reaction using hexylamine. Chemically crosslinked gels or highly end-functionalized star polymers can be obtained depending mainly on the type of solvent used during the transformation of the RAFT functional group. An increase in the viscosity of the solution was observed when the aminolysis was carried out in THF. In contrast, when the reaction was conducted in dichloromethane, chain-end thiol (PNVCL)6 star polymers could be obtained. Moreover, when purified (PNVCL-SH)6 star polymers are in contact with THF, the gelation occurs in just a few minutes, with an obvious increase in viscosity, to form physical gels that become chemically crosslinked gels after 12 h. Interestingly, when purified (PNVCL-SH)6 star polymers were stirred in distilled water, even at high aqueous solution concentration (40 mg/mL), there was no increase in the viscosity or gelation, and no evident gels were observed. The analysis of the hydrodynamic diameter (Dh) by dynamic light scattering (DLS) did not detect quantifiable change even after 4 days of stirring in water. On the other hand, the thiol groups in the (PNVCL-SH)6 star polymers were easily transformed into trithiocarbonate groups by addition of CS2 followed by benzyl bromide as demonstrated by UV-Vis spectroscopical analysis and GPC. After the modification, the (PNVCL)6 star polymers exhibit an intense yellow color typical of the absorption band of trithiocarbonate group at 308 nm. To further demonstrate the highly effective new trithiocarbonate end-functionality, the PNVCL polymers were successfully chain extended with N-isopropylacrylamide (NIPAM) to form six-arm star-shaped PNIPAM-b-PNVCL block copolymers. Moreover, the terminal thiol end-functionality in the (PNVCL-SH)6 star polymers was linked via disulfide bond formation to l-cysteine to further demonstrate its reactivity. Zeta potential analysis shows the pH-responsive behavior of these star polymers due to l-cysteine end-functionalization. By this using methodology and properly selecting the solvent, various environment-sensitive star polymers with different end-groups could be easily accessible.

2.
ACS Omega ; 5(8): 3943-3951, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149221

ABSTRACT

Currently, there is a growing concern regarding water remediation from agricultural and domestic wastewaters. Among water treatment methods, flocculation is a widely used approach. In this study, the bioflocculation of wastewaters from Sinaloa (Mexico) was examined using two bioflocculants: chitosan and bean straw flour (BSF). The jar-test results showed that chitosan exhibited high effectiveness in pollutant removal from different sampling zones (agricultural wastewater and river water). Additionally, this bioflocculant reduced remarkably the concentration of Mn and Fe. On the other hand, BSF showed high effectiveness in pollutant removal for a specific type of wastewater, being highly competitive as compared to chitosan. Besides, BSF led to 40% of Mn removal from highly contaminated river water samples. For both biomaterials, bioflocculation was driven by charge neutralization and sweep flocculation mechanisms. For a given agricultural wastewater sample, both bioflocculants performed better than the commercial poly(aluminum chloride) for pH regulation and Fe removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...