Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(10): e2006826, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33543546

ABSTRACT

2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive. Herein, a further step is taken by introducing the exfoliation of germanium, a narrow-bandgap semiconductor presenting a 3D diamond-like structure with strong covalent bonds. Pure α-germanium is exfoliated following a simple one-step procedure assisted by wet ball-milling, allowing gram-scale fabrication of high-quality layers with large lateral dimensions and nanometer thicknesses. The generated flakes are thoroughly characterized by different techniques, giving evidence that the new 2D material exhibits bandgaps that depend on both the crystallographic direction and the number of layers. Besides potential technological applications, this work is also of interest for the search of 2D materials with new properties.

2.
ACS Appl Mater Interfaces ; 12(4): 4741-4748, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31880904

ABSTRACT

Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBa2Cu3O7-δ (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective step toward total ionic tuning of superconductivity in oxides, an interface-induced effect that goes well into the quasi-bulk regime, opening-up possibilities for electric field manipulation.

3.
Nano Lett ; 17(7): 4261-4269, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28654283

ABSTRACT

The localization of carrier states in GaN/AlN self-assembled quantum dots (QDs) is studied by correlative multimicroscopy relying on microphotoluminescence, electron tomography, and atom probe tomography (APT). Optically active field emission tip specimens were prepared by focused ion beam from an epitaxial film containing a stack of quantum dot layers and analyzed with different techniques applied subsequently on the same tip. The transition energies of single QDs were calculated in the framework of a 6-bands k.p model on the basis of APT and scanning transmission electron microscopy characterization showing that a good agreement between experimental and calculated energies can be obtained, overcoming the limitations of both techniques. The results indicate that holes effectively localize at interface fluctuations at the bottom of the QD, decreasing the extent of the wave function and the band-to-band transition energy. They also represent an important step toward the correlation of the three-dimensional atomic scale structural information with the optical properties of single light emitters based on quantum confinement.

4.
Nano Lett ; 14(1): 107-14, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24397602

ABSTRACT

A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (µPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed µPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.3 eV, are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW) planes. This novel method opens up interesting perspectives, as it will be possible to apply it on a wide class of quantum confining emitters and nano-objects.


Subject(s)
Gallium/chemistry , Indium/chemistry , Luminescent Measurements/methods , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning Transmission/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Materials Testing/methods , Molecular Conformation , Quantum Theory , Statistics as Topic
5.
Microsc Microanal ; 17(4): 578-81, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21615979

ABSTRACT

We show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an InxGa1-xAs multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S., Shiraki, Y. & Ito, R. (1992). Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantums wells. Appl Phys Lett 61, 557-559].

SELECTION OF CITATIONS
SEARCH DETAIL
...