Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7307, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538805

ABSTRACT

An efficient and reproducible growth of vertically aligned carbon nanotubes by CCVD requires accurate and specific setting of the synthesis parameters and the properties of catalyst thin layers. In this work, the growth of vertically aligned carbon nanotubes onto AZO (= aluminum doped zinc oxide) glass substrate covered by Al2O3 and Fe-Co catalyst layer system is presented. Investigation of the effect of catalyst composition and synthesis temperature on CVD growth revealed the optimum condition of the synthesis. The analysis of as-prepared samples by SEM, TEM and Raman spectroscopy was carried out to prove the structure and quality of carbon deposit. Theoretical considerations have supported speculative ideas about the role of the support layer, the transformation of the catalyst layer in the presence of hydrogen gas and the growth mechanism of carbon nanotubes. The mechanism of CNT growth is modelled and the order of magnitude of experimentally observed vertical linear growth rate of CNT (several nm/s) is reproduced.

2.
Heliyon ; 9(12): e22535, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046136

ABSTRACT

The energy and exergy efficiency of a photovoltaic thermal (PV/T) system at various volume fractions is investigated with mono TiO2 nanofluid and new hybrid TiO2-Fe2O3 nanofluid. Serpentine tubes soldered on an absorbing plate attached to the rear of the PV module have been proposed to evaluate the effect of nanofluids on the PV/T temperature reduction, energy produced, and exergy losses. The study compared energy and exergy with previous studies and delivered an economic analysis to confirm the feasibility of applying nanofluids. The results indicated that using TiO2-Fe2O3 nanofluid reduced the PV cell's temperature by 42.19% compared to water, TiO2 nanofluid, which increased the electrical power by 74.5% and 46.22% when cooling by mono and hybrid nanofluid at 0.3 vol%. The PV/T system's maximum thermal and electrical efficiency recorded with mono and hybrid nanofluids was 34.6%, 8.44%, 47.2%, and 12.62%, respectively. Dispersion of hybrid nanocomposite in DI water has enhanced the Nu number and HTC by 42.72% and 23% higher than mono nanofluid, which improved the exergy efficiency of the PV/T system by 14.89%. A better payback period was achieved with a hybrid nanofluid by 54 days with reduced exergy losses by 45.5% and entropy generation by 86.29%.

3.
Heliyon ; 9(11): e21958, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034800

ABSTRACT

A newly developed water-soluble polymeric nano-additive termed "partially cross-linked nanoparticles graft copolymer (PCLNPG)" has been successfully synthesized and harnessed as a pore former for modifying a polyethersulfone ultrafiltration membrane for dyes removal. The PCLNPG content was varied in the PES polymeric matrix aiming to scrutinize its impact on membrane surface characteristics, morphological structure, and overall performance. Proposed interaction mechanism between methylene blue (MB), methyle orange (MO), and malachite green (MG) dyes with PES membrane was presented as well. Hydrophilicity and porosity of the novel membrane increased by 18 and 17 %, respectively, when manufactured with a 3 Wt. % PCLNPG, according to the findings. Besides this, the disclosed increased porosity, rather than the hydrophilic properties of the water-soluble PCLNPG, was the principal cause of the diminished contact angle. Meanwhile, raising the PCLNPG content in the prepared membrane made worthy shifts in its structure. A sponge-like region was materialized near the bottom surface as well. The membrane's pure water flux (PWF) synthesized with 3 Wt.% PCLNPG recorded 628 LMH, which is estimated 3.95 fold the pristine membrane. MG, MB, and MO dyes were rejected by 90.6, 96.3, and 97.87 %, respectively. These findings showed that the performance characteristics of the PES/PCLNPG membrane make it a potentially advantageous option to treat the textile wastewater.

4.
Membranes (Basel) ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36984656

ABSTRACT

In this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.1 wt.% of GO-WO2.89 possessed the best characteristics, with a 40.82° contact angle and 92.94% porosity. The permeation flux of the best membrane was the highest. The pure water permeation flux of the best membrane showcased 636.01 L·m-2·h-1 with 82.86% BSA rejection. Moreover, the membranes (MR-2 and MR-P2) manifested a higher flux recovery ratio (FRR %) of 92.66 and 87.06%, respectively, and were less prone to BSA solution fouling. The antibacterial performance of the GO-WO2.89 composite was very positive with three different concentrations, observed via the bacteria count method. These results significantly overtake those observed by neat PPSU membranes and offer a promising potential of GO-WO2.89 on activity membrane performance.

5.
Membranes (Basel) ; 13(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837714

ABSTRACT

Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.

6.
Membranes (Basel) ; 12(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363598

ABSTRACT

The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal-organic framework (MOFs), covalent organic frameworks (COFs) and carbon-based nanomaterials (such as carbon nanotubes and graphene oxide (GO)). The influence of these nanoparticles on the surface and structural changes in the membrane is thoroughly discussed, in addition to the performance efficiency and antifouling resistance of the developed membranes. Recently, GO has shown a considerable capacity in wastewater treatment. This is due to its nanometer-sized holes, ultrathin layer and light and sturdy nature. Therefore, we discuss the effect of the addition of hydrophilic GO in neat form or hyper with other nanoparticles on the properties of different polymeric membranes. A hybrid composite of various NPs has a distinctive style and high-quality products can be designed to allow membrane technology to grow and develop. Hybrid composite NPs could be used on a large scale in the future due to their superior mechanical qualities. A summary and future prospects are offered based on the current discoveries in the field of mixed matrix membranes. This review presents the current progress of mixed matrix membranes, the challenges that affect membrane performance and recent applications for wastewater treatment systems.

7.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080051

ABSTRACT

In the current research, surface-modified SiO2 nanoparticles were used upon immersion in an applied base fluid (ethylene glycol:water = 1:1). The atomic layer deposition method (ALD) was introduced to obtain a thin layer of TiO2 to cover the surface of SiO2 particles. After the ALD modification, the TiO2 content was monitored by energy dispersive X-ray spectroscopy (EDS). Transmission electron microscopy (TEM) and FT-IR spectroscopy were applied for the particle characterization. The nanofluids contained 0.5, 1.0, and 1.5 volume% solid particles and zeta potential measurements were examined in terms of colloid stability. A rotation viscosimeter and thermal conductivity analyzer were used to study the nanofluids' rheological properties and thermal conductivity. These two parameters were investigated in the temperature range of 20 °C and 60 °C. Based on the results, the thin TiO2 coating significant impacted these parameters.

8.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808062

ABSTRACT

In this paper, we present a study on thermal conductivity and viscosity of nanofluids containing novel atomic layer deposition surface-modified carbon nanosphere (ALD-CNS) and carbon nanopowder (ALD-CNP) core-shell nanocomposites. The nanocomposites were produced by atomic layer deposition of amorphous TiO2. The nanostructures were characterised by scanning (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetry/differential thermal analysis (TG/DTA) and X-ray powder diffraction (XRD). High-concentration, stable nanofluids were prepared with 1.5, 1.0 and 0.5 vol% nanoparticle content. The thermal conductivity and viscosity of the nanofluids were measured, and their stability was evaluated with Zeta potential measurements. The ALD-CNS enhanced the thermal conductivity of the 1:5 ethanol:water mixture by 4.6% with a 1.5 vol% concentration, and the viscosity increased by 37.5%. The ALD-CNS increased the thermal conductivity of ethylene-glycol by 10.8, whereas the viscosity increased by 15.9%. The use of a surfactant was unnecessary due to the ALD-deposited TiO2 layer.

9.
Molecules ; 27(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35566300

ABSTRACT

Nowadays, the use of hybrid structures and multi-component materials is gaining ground in the fields of environmental protection, water treatment and removal of organic pollutants. This study describes promising, cheap and photoactive self-supported hybrid membranes as a possible solution for wastewater treatment applications. In the course of this research work, the photocatalytic performance of titania nanowire (TiO2 NW)-based hybrid membranes in the adsorption and degradation of methylene blue (MB) under UV irradiation was investigated. Characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffractometry (XRD) were used to study the morphology and surface of the as-prepared hybrid membranes. We tested the photocatalytic efficiency of the as-prepared membranes in decomposing methylene blue (MB) under UV light irradiation. The hybrid membranes achieved the removal of MB with a degradation efficiency of 90% in 60 min. The high efficiency can be attributed to the presence of binary components in the membrane that enhanced both the adsorption capability and the photocatalytic ability of the membranes. The results obtained suggest that multicomponent hybrid membranes could be promising candidates for future photocatalysis-based water treatment technologies that also take into account the principles of circular economy.


Subject(s)
Nanowires , Water Purification , Methylene Blue/chemistry , Titanium/chemistry
10.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615999

ABSTRACT

The widespread use of Ag3PO4 is not surprising when considering its higher photostability compared to other silver-based materials. The present work deals with the facile precipitation method of silver phosphate. The effects of four different phosphate sources (H3PO4, NaH2PO4, Na2HPO4, Na3PO4·12 H2O) and two different initial concentrations (0.1 M and 0.2 M) were investigated. As the basicity of different phosphate sources influences the purity of Ag3PO4, different products were obtained. Using H3PO4 did not lead to the formation of Ag3PO4, while applying NaH2PO4 resulted in Ag3PO4 and a low amount of pyrophosphate. The morphological and structural properties of the obtained samples were studied by X-ray diffractometry, diffuse reflectance spectroscopy, scanning electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of the materials and the corresponding reaction kinetics were evaluated by the degradation of methyl orange (MO) under visible light. Their stability was investigated by reusability tests, photoluminescence measurements, and the recharacterization after degradation. The effect of as-deposited Ag nanoparticles was also highlighted on the photostability and the reusability of Ag3PO4. Although the deposited Ag nanoparticles suppressed the formation of holes and reduced the degradation of methyl orange, they did not reduce the performance of the photocatalyst.

11.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641462

ABSTRACT

In this work core/shell composite polymer/TiO2 nanofibers and from those TiO2 nanotubes were prepared. First, poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) fibers were synthetized by electrospinning. They were covered with a 100 nm thick amorphous TiO2 layer by atomic layer deposition at 50 °C. Later the polymer core was removed by two different methods: dissolution and annealing. In the case of dissolution in water, the as-prepared TiO2 nanotubes remained amorphous, while when annealing was used to remove the polymers, the TiO2 crystallized in anatase form. Due to this, the properties of amorphous and crystalline TiO2 nanotubes with exactly the same structure and morphology could be compared. The samples were investigated by SEM-EDX, ATR-IR, UV-Vis, XRD and TG/DTA-MS. Finally, the photocatalytic properties of the TiO2 nanotubes were studied by decomposing methyl-orange dye under UV light. According to the results, crystalline anatase TiO2 nanotubes reached the photocatalytic performance of P25, while amorphous TiO2 nanotubes had observable photocatalytic activity.

12.
Materials (Basel) ; 14(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443063

ABSTRACT

The suitability of a new type of polyurethane-based composite carbon foam for several possible usages is evaluated and reported. A comparison of the properties of the as-prepared carbon foams was performed with widely available commercial biomass-derived activated carbon. Carbon foams were synthesized from polyurethane foams with different graphite contents through one-step activation using CO2. In this work, a carbon catalyst was synthesized with a moderately active surface (SBET = 554 m2/g), a thermal conductivity of 0.09 W/mK, and a minimum metal ion content of 0.2 wt%, which can be recommended for phosgene production. The composite carbon foams exhibited better thermal stability, as there is a very little weight loss at temperatures below 500 °C, and weight loss is slower at temperatures above 500 °C (phosgene synthesis: 550-700 °C). Owing to the good surface and thermal properties and the negligible metallic impurities, composite carbon foam produced from polyurethane foams are the best alternative to the conventional coconut-based activated carbon catalyst used in phosgene gas production.

13.
Nanomaterials (Basel) ; 11(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069425

ABSTRACT

ZnO photocatalysts were synthesized via solvothermal method and a reduced experimental design (Box-Behnken) was applied to investigate the influence of four parameters (temperature, duration, composition of the reaction mixture) upon the photocatalytic activity and the crystal structure of ZnO. The four parameters were correlated with photocatalytic degradation of methyl orange and the ratio of two crystallographic facets ((002) and (100)) using a quadratic model. The quadratic model shows good fit for both responses. The optimization experimental results validated the models. The ratio of the crystal facets shows similar variation as the photocatalytic activity of the samples. The water content of the solvent is the primary factor, which predominantly influence both responses. An explanation was proposed for the effect of the parameters and how the ratio of (002) and (100) crystal facets is influenced and its relation to the photocatalytic activity. The present research laconically describes a case study for an original experimental work, in order to serve as guideline to deal with such complicated subjects as quantifying influence of synthesis parameters upon the catalytic activity of the obtained ZnO.

14.
Chemosphere ; 280: 130636, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33975237

ABSTRACT

BiOI, BiOCl, and their composites (BiOI:BiOCl) with molar ratios from 95:5 to 5:95 were synthesized and tested in the transformation of methyl orange (MO) and sulfamethoxypyridazine (SMP) antibiotic, using three various LED light sources: UV LEDs (398 nm), cool and warm white LEDs (400-700 nm). The 80:20 BiOI:BiOCl photocatalyst showed the best adsorption capacity for MO and enhanced activity compared to BiOI and BiOCl. The apparent quantum yield (Φapp) of the MO and SMP transformation for cool and warm white light was slightly lower than for 398 nm UV radiation. The effect of methanol and 1,4-benzoquinone proved that the transformation is initiated mainly via direct charge transfer, resulting in the demethylation of MO and SO2 extrusion from SMP. The change of photocatalytic efficiency was followed during three cycles. After the first one, the transformation rates decreased, but there was no significant difference between the second and third cycles. The decreased efficiency is most probably caused by the intermediates, whose continuous accumulation was observed during the cycles. Ecotoxicity measurements confirmed that no toxic substances were leached from the catalyst, but the transformation of both MO and SMP results in toxic intermediates. Using 80:20 BiOI:BiOCl and LED light source, the energy requirement of the removal is about half of the value determined using TiO2 and a mercury vapor lamp. The effect of some components of wastewater (Cl-, HCO3- and humic acids), pH, and two matrices on the composite photocatalysts' efficiency and stability were also investigated.


Subject(s)
Bismuth , Ultraviolet Rays , Adsorption , Catalysis , Light
15.
Materials (Basel) ; 14(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925623

ABSTRACT

Bismuth oxychloride photocatalysts were obtained using solvothermal synthesis and different additives (CTAB-cetyltrimethylammonium bromide, CTAC-cetyltrimethylammonium chloride, PVP-polyvinylpyrrolidone, SDS-sodium dodecylsulphate, U-urea and TU-thiourea). The effect of the previously mentioned compounds was analyzed applying structural (primary crystallite size, crystal phase composition, etc.), morphological (particle geometry), optical (band gap energy) parameters, surface related properties (surface atoms' oxidation states), and the resulted photocatalytic activity. A strong dependency was found between the surface tension of the synthesis solutions and the overall morpho-structural parameters. The main finding was that the characteristics of the semiconductors can be tuned by modifying the surface tension of the synthesis mixture. It was observed after the photocatalytic degradation, that the white semiconductor turned to grey. Furthermore, we attempted to explain the gray color of BiOCl catalysts after the photocatalytic decompositions by Raman and XPS studies.

16.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671055

ABSTRACT

A comparative research on stability, viscosity (µ), and thermal conductivity (k) of carbon nanosphere (CNS) and carbon nanopowder (CNP) nanofluids was performed. CNS was synthesized by the hydrothermal method, while CNP was provided by the manufacturer. Stable nanofluids at high concentrations 0.5, 1.0, and 1.5 vol% were prepared successfully. The properties of CNS and CNP nanoparticles were analyzed with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SBET), X-ray powder diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and energy dispersive X-ray analysis (EDX). The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol% concentration compared to the base fluid, while the CNS does not make the thermal conductivity of nanofluids (knf) significantly higher. The studied nanofluids were Newtonian. The relative µ of CNS and CNP nanofluids was 1.04 and 1.07 at 0.5 vol% concentration and 30 °C. These results can be explained by the different sizes and crystallinity of the used nanoparticles.

17.
Molecules ; 26(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33669994

ABSTRACT

In the present work, shape tailored Cu2O microparticles were synthesized by changing the nature of the reducing agent and studied subsequently. d-(+)-glucose, d-(+)-fructose, d-(+)xylose, d-(+)-galactose, and d-(+)-arabinose were chosen as reducing agents due to their different reducing abilities. The morpho-structural characteristics were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS), while their photocatalytic activity was evaluated by methyl orange degradation under visible light (120 min). The results show that the number of carbon atoms in the sugars affect the morphology and particle size (from 250 nm to 1.2 µm), and differences in their degree of crystallinity and photocatalytic activity were also found. The highest activity was observed when glucose was used as the reducing agent.


Subject(s)
Copper/chemistry , Light , Reducing Agents/chemistry , Sugars/chemistry , Catalysis , Particle Size , Photochemical Processes , Surface Properties
18.
J Nanosci Nanotechnol ; 21(4): 2342-2350, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500050

ABSTRACT

Photosynthetic reaction center proteins (RC) purified from purple bacterial strains were deposited on graphene layer prepared by liquid phase exfoliation and light-induced resistance change was measured. By measuring the temperature dependence of the resistance change of the bare and RC covered graphene and comparing with the one inactivated by protein unfolding, two effects were possible to separate. One of them is the resistance change due to temperature effect. The other one clearly indicates a possible electric/electronic interaction between the charge flow in the graphene and the light-induced charge pair within the protein, which is, essentially, different in the open (dark, PBPheo) and closed (light, P+BPheo-) states. These results provide useful information for designing hybrid bio-photonic devices which are able to absorb and convert light energy.

19.
J Nanosci Nanotechnol ; 21(4): 2360-2367, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500052

ABSTRACT

Titania and carbon materials are intensively studied in composite materials including photocatalytic applications. Both positive and negative effects were described in the literature, including charge separation, adsorption enhancement and short-circuiting of the photoelectrons as well. In the present study a more sparsely investigated properties of carbon materials will be highlighted, namely their role as crystallization promoters for titania, during hydrothermal synthesis of the composites. Therefore, carbon nanotubes, carbon coils, activated carbon, graphite and carbon aerogel was used to identify the importance of carbon during the time dependent crystallization of titanium dioxide. The crystal phase composition, morphology, optical properties and photocatalytic activity was followed, and it was found that the anatase and rutile crystallization depended on the used carbon material. The morphology of the particles varied from single anatase sheet-like crystals to hierarchical microball-like structures, while in some cases no specific morphology was observed. Furthermore, it was found that despite the low carbon content (2 wt.%) and microcrystalline structure of TiO2 the composites were proven to be efficient in the degradation of Rhodamine B under UV light irradiation.

20.
J Nanosci Nanotechnol ; 21(4): 2394-2403, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500056

ABSTRACT

Application of multiwall carbon nanotubes (MWCNT) as a filler component in composite materials can lead to remarkable increase in mechanical strength. It is a challenging application to form a living bone tissue biocomposite that is reinforced with MWCNTs at a dental implant-bone interface. The successful biointegration of MWCNT and the implant material depends on the processes of osseointegration, namely surface interactions at the molecular and cellular level. In this work the compatibility of MWCNT with main osseointegration processes has been overviewed with special attention to the toxicity of MWCNT for interacting human cells, and In Vitro experiments were performed with primary human osteoblast cells. The cells were isolated from oral bone fragments and grown in cell culture conditions. Plate wells were covered with MWCNT layers of three different densities. Osteoblast cell suspensions were placed onto the MWCNT layers and into empty plate wells. 24 and 72 hours after seeding the attachment and proliferation of cells was evaluated using Thiazolyl Blue Tetrazolium Bromide (MTT) colorimetric assay. The extent of cell death was characterized by Lactate Dehydrogenase (LDH) assay. The osteoblast cell viability tests show that cells were attached to all investigated surfaces, but with lower rate to higher density MWCNTs. A low level of cell death was observed in each sample type. Phase contrast and fluorescent microscopic observations show that although MWCNTs are not toxic for human primary osteoblast cells, an intense interaction of the cells with MWCNTs reduces their proliferation and markedly affects their morphology.


Subject(s)
Nanotubes, Carbon , Bone and Bones , Bone-Implant Interface , Cell Survival , Humans , Nanotubes, Carbon/toxicity , Osteoblasts
SELECTION OF CITATIONS
SEARCH DETAIL
...