Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(16): 12745-12752, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38619305

ABSTRACT

In this work, we studied the reactions of three cyclic aliphatic alcohols with OH at room temperature, atmospheric pressure and different humidities in a Teflon reaction chamber. It was determined that the lower the solubility of the alcohol in water, the larger the effect of the humidity on the acceleration of the reaction. This experimental evidence allows suggesting that the acceleration is due to the reaction of the co-adsorbed reactants at the air-water interface of a thin water film deposited on the Teflon walls of the reaction chamber, instead of between co-reactants dissolved in the water film or due to gas phase catalysis as previously suggested. Therefore, formation of thin water films on different surfaces could have some implications on the tropospheric chemistry of these alcohols in the tropical regions of the planet with high humidity.

2.
J Org Chem ; 88(9): 5311-5320, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37022327

ABSTRACT

Storing solar energy is a vital component of using renewable energy sources to meet the growing demands of the global energy economy. Molecular solar thermal (MOST) energy storage is a promising means to store solar energy with on-demand energy release. The light-induced isomerization reaction of norbornadiene (NBD) to quadricyclane (QC) is of great interest because of the generally high energy storage density (0.97 MJ kg-1) and long thermal reversion lifetime (t1/2,300K = 8346 years). However, the mechanistic details of the ultrafast excited-state [2 + 2]-cycloaddition are largely unknown due to the limitations of experimental techniques in resolving accurate excited-state molecular structures. We now present a full computational study on the excited-state deactivation mechanism of NBD and its dimethyl dicyano derivative (DMDCNBD) in the gas phase. Our multiconfigurational calculations and nonadiabatic molecular dynamics simulations have enumerated the possible pathways with 557 S2 trajectories of NBD for 500 fs and 492 S1 trajectories of DMDCNBD for 800 fs. The simulations predicted the S2 and S1 lifetimes of NBD (62 and 221 fs, respectively) and the S1 lifetime of DMDCNBD (190 fs). The predicted quantum yields of QC and DCQC are 10 and 43%, respectively. Our simulations also show the mechanisms of forming other possible reaction products and their quantum yields.

3.
Annu Rev Phys Chem ; 74: 547-571, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36791781

ABSTRACT

Light-driven phenomena in organic molecular aggregates underpin several mechanisms relevant to optoelectronic applications. Modeling these processes is essential for aiding the design of new materials and optimizing optoelectronic devices. In this review, we cover the use of different atomistic models, excited-state dynamics, and transport approaches for understanding light-activated phenomena in molecular aggregates, including radiative and nonradiative decay pathways. We consider both intra- and intermolecular mechanisms and focus on the role of conical intersections as facilitators of internal conversion. We explore the use of the exciton models for Frenkel and charge transfer states and the electronic structure methods and algorithms commonly applied for excited-state dynamics. Throughout the review, we analyze the approximations employed for the simulation of internal conversion, intersystem crossing, and reverse intersystem crossing rates and analyze the molecular processes behind single fission, triplet-triplet annihilation, Dexter energy transfer, and Förster energy transfer.

4.
Anal Chem ; 95(2): 703-713, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36599091

ABSTRACT

With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting" approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.


Subject(s)
Cannabinoid Receptor Agonists , Illicit Drugs , Humans , Cannabinoid Receptor Agonists/chemistry , Point-of-Care Systems , Substance Abuse Detection/methods
5.
Phys Chem Chem Phys ; 24(48): 29437-29450, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36453725

ABSTRACT

Optoelectronic materials based on metal-free organic molecules represent a promising alternative to traditional inorganic devices. Significant attention has been devoted to the development of the third generation of OLEDs which are based on the temperature-activated delayed fluorescence (TADF) mechanism. In the last few years, several materials displaying ultra-long organic phosphorescence (UOP) have been designed using strategies such as crystal engineering and halogen functionalisation. Both TADF and UOP are controlled by the population of triplet states and the energy gaps between the singlet and triplet manifolds. In this paper, we explore the competition between TADF and UOP in the molecular crystals of three dichloro derivatives of 9H-carbazol-3-yl(phenyl)methanone. We investigate the excited state mechanisms in solution and the crystalline phase and address the effects of exciton transport and temperature on the rates of direct and reverse intersystem crossing under the Marcus-Levich-Jortner model. We also analyse how the presence of isomeric impurities and the stabilisation of charge transfer states affect these processes. Our simulations explain the different mechanisms observed for the three derivatives and highlight the role of intramolecular rotation and crystal packing in determining the energy gaps. This work contributes to a better understanding of the connection between chemical and crystalline structures that will enable the design of efficient materials.

6.
ACS Omega ; 6(27): 17289-17298, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278115

ABSTRACT

The solvothermal synthesis of metal-organic frameworks (MOFs) often proceeds through competing crystallization pathways, and only partial control over the crystal nucleation and growth rates is possible. It challenges the use of MOFs as functional devices in free-space optics, where bulk single crystals of millimeter dimensions and high optical quality are needed. We develop a synthetic protocol to control the solvothermal growth of the MOF [Zn(3-ptz)2] n (MIRO-101), to obtain large single crystals with projected surface areas of up to 25 mm2 in 24 h, in a single reaction with in situ ligand formation. No additional cooling and growth steps are necessary. We propose a viable reaction mechanism for the formation of MIRO-101 crystals under acidic conditions, by isolating intermediate crystal structures that directly connect with the target MOF and reversibly interconverting between them. We also study the nucleation and growth kinetics of MIRO-101 using ex situ crystal image analysis. The synthesis parameters that control the size and morphology of our target MOF crystal are discussed. Our work deepens our understanding of MOF growth processes in solution and demonstrates the possibility of building MOF-based devices for future applications in optics.

7.
Nat Commun ; 12(1): 214, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431901

ABSTRACT

Strong cavity coupling to molecular vibrations creates vibration-polaritons capable of modifying chemical reaction kinetics, product branching ratios, and charge transfer equilibria. However, the mechanisms impacting these molecular processes remain elusive. Furthermore, even basic elements determining the spectral properties of polaritons, such as selection rules, transition moments, and lifetimes are poorly understood. Here, we use two-dimensional infrared and filtered pump-probe spectroscopy to report clear spectroscopic signatures and relaxation dynamics of excited vibration-polaritons formed from the cavity-coupled NO band of nitroprusside. We apply an extended multi-level quantum Rabi model that predicts transition frequencies and strengths that agree well with our experiment. Notably, the polariton features decay ~3-4 times slower than the polariton dephasing time, indicating that they support incoherent population, a consequence of their partial matter character.

8.
Plant Cell ; 32(10): 3346-3369, 2020 10.
Article in English | MEDLINE | ID: mdl-32769130

ABSTRACT

Arabinogalactan proteins (AGPs) are a family of plant extracellular proteoglycans involved in many physiological events. AGPs are often anchored to the extracellular side of the plasma membrane and are highly glycosylated with arabinogalactan (AG) polysaccharides, but the molecular function of this glycosylation remains largely unknown. The ß-linked glucuronic acid (GlcA) residues in AG polysaccharides have been shown in vitro to bind to calcium in a pH-dependent manner. Here, we used Arabidopsis (Arabidopsis thaliana) mutants in four AG ß-glucuronyltransferases (GlcAT14A, -B, -D, and -E) to understand the role of glucuronidation of AG. AG isolated from glcat14 triple mutants had a strong reduction in glucuronidation. AG from a glcat14a/b/d triple mutant had lower calcium binding capacity in vitro than AG from wild-type plants. Some mutants had multiple developmental defects such as reduced trichome branching. glcat14a/b/e triple mutant plants had severely limited seedling growth and were sterile, and the propagation of calcium waves was perturbed in roots. Several of the developmental phenotypes were suppressed by increasing the calcium concentration in the growth medium. Our results show that AG glucuronidation is crucial for multiple developmental processes in plants and suggest that a function of AGPs might be to bind and release cell-surface apoplastic calcium.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Calcium/metabolism , Galactans/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Genetic Pleiotropy , Glucuronides/metabolism , Mutation , Phylogeny , Plant Leaves/metabolism , Plant Roots/metabolism
9.
J Chem Theory Comput ; 16(7): 4454-4469, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32511909

ABSTRACT

The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the "LDA+U" and "pseudo SIC" methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.

10.
J Chem Phys ; 152(23): 234111, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32571050

ABSTRACT

Vibrational strong coupling has emerged as a promising route for manipulating the reactivity of molecules inside infrared cavities. We develop a full-quantum methodology to study the unitary dynamics of a single anharmonic vibrational mode interacting with a quantized infrared cavity field. By comparing multi-configurational time-dependent Hartree simulations for an intracavity Morse oscillator with an equivalent formulation of the problem in Hilbert space, we describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets. We classify molecules into three general families according to the shape of their electric dipole function de(q) along the vibrational mode coordinate q. For polar species with a positive slope of the dipole function at equilibrium, an initial diabatic light-matter product state without vibrational or cavity excitations evolves into a polariton wavepacket with a large number of intracavity photons for interaction strengths at the conventional onset of ultrastrong coupling. This buildup of the cavity photon amplitude is accompanied by an effective lengthening of the vibrational mode that is comparable with a laser-induced vibrational excitation in free space. In contrast, polar molecules with a negative slope of the dipole function experience an effective mode shortening, under equivalent coupling conditions. We validate our predictions using realistic ab initio ground state potentials and dipole functions for HF and CO2 molecules. We also propose a non-adiabatic state preparation scheme to generate vibrational polaritons with molecules near infrared nanoantennas for the spontaneous radiation of infrared quantum light.

11.
J Chem Phys ; 151(14): 144116, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615252

ABSTRACT

We propose a cavity QED approach to describe light-matter interaction of an infrared cavity field with an anharmonic vibration of a single nonpolar molecule. Starting from a generic Morse oscillator potential with quantized nuclear motion, we derive a multilevel quantum Rabi model to study vibrational polaritons beyond the rotating-wave approximation. We analyze the spectrum of vibrational polaritons in detail and compare it with available experiments. For high excitation energies, the system exhibits a dense manifold of polariton level crossings and avoided crossings as the light-matter coupling strength and cavity frequency are tuned. We also analyze polariton eigenstates in nuclear coordinate space. We show that the bond length of a vibrational polariton at a given energy is never greater than the bond length of a Morse oscillator with the same energy. This type of polariton bond strengthening occurs at the expense of the creation of virtual infrared cavity photons and may have implications in chemical reactivity of polariton states.

12.
Plant Direct ; 3(2): e00117, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31245760

ABSTRACT

All members of the DUF579 family characterized so far have been described to affect the integrity of the hemicellulosic cell wall component xylan: GXMs are glucuronoxylan methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan; IRX15 and IRX15L, although their enzymatic activity is unknown, are required for xylan biosynthesis and/or xylan deposition. Here we show that the DUF579 family members, AGM1 and AGM2, are required for 4-O-methylation of glucuronic acid of a different plant cell wall component, the highly glycosylated arabinogalactan proteins (AGPs).

13.
J Phys Chem A ; 123(10): 2065-2072, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30767532

ABSTRACT

In the present work we applied a fully atomistic electron-nuclear real-time propagation protocol to compute the impulsive vibrational spectroscopy of the five DNA/RNA nucleobases in order to study the very first steps (subpicosecond) of their energy distribution after UV excitation. We observed that after the pump pulse absorption the system is prepared in a coherent superposition of the ground and the pumped electronic excited states in the equilibrium geometry of the ground state. Furthermore, for relatively low fluency values of the pump pulse, the dominant contribution to the electronic wave function of the coherent state is of the ground state and the mean potential energy surface within the Ehrenfest approximation is similar to that of the ground state. As a consequence, the molecular displacements are better correlated with ground-state normal modes. On the other hand, when the pump fluency is increased the excited-state contribution to the electronic wave function becomes more important and the mean potential energy surface resembles more that of the excited state, producing a better correlation between the molecular displacements and the excited-state normal modes. Finally, it has been observed that the impulsive activation of several vibrational modes upon electronic excitation is triggered by the development of excited-state forces which accelerate the nuclei from their equilibrium positions causing a distribution of the absorbed electronic energy on the nuclear degrees of freedom and could be closely related to the driving force of the ultrafast nonradiative deactivation observed in these systems.

14.
Phys Chem Chem Phys ; 20(44): 27885-27896, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30378613

ABSTRACT

The rate coefficients for the reactions of OH with ethanol and n-propanol were determined by a relative method in a smog chamber at 294 K, 1 atm of air or N2 and a wide range of humidity. The rate coefficients for both reactions show a quadratic dependence on the water concentration as in the case of the reaction of OH with methanol (Jara-Toro et al. Angew. Chem., Int. Ed., 2017, 56, 2166). The detailed mechanism responsible for the reaction acceleration was studied theoretically at the uMP2/aug-cc-pVDZ level of theory while the electronic energies of all the structures were refined at the uCCSD(T)/aug-cc-pVDZ level. From these results it is suggested that the catalytic effect of two water molecules is due to two cooperative effects in the reactions between the ROH(H2O) and OH(H2O) equilibrium complexes: (1) an enhanced capture cross-section as a consequence of the larger dipolar moment of the ROH(H2O) and OH(H2O) complexes as compared to those of the free reactants ROH and OH and (2) a strong stabilization of the TSs below the energy of the reactants that leads to a very fast decomposition of the pre-reactive complexes to products with an extremely low probability of dissociation back to the reactants. The tropospheric lifetime of these alcohols is also shown to strongly depend on the humidity, suggesting the need to incorporate this dependence in global atmospheric models.

15.
J Phys Chem Lett ; 9(15): 4355-4359, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30024765

ABSTRACT

We have implemented an electron-nuclear real-time propagation scheme for the calculation of transient absorption spectra. When this technique is applied to the study of ultrafast dynamics of Soret-excited zinc(II) tetraphenylporphyrin in the subpicosecond time scale, quantum beats in the transient absorption caused by impulsively excited molecular vibrations are observed. The launching mechanism of such vibrations can be regarded as a displacive excitation of the zinc-pyrrole and pyrrole C-C bonds.

16.
Angew Chem Int Ed Engl ; 56(8): 2166-2170, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28079951

ABSTRACT

The rate coefficient for the reaction CH3 OH+OH was determined by means of a relative method in a simulation chamber under quasi-real atmospheric conditions (294 K, 1 atm of air) and variable humidity or water concentration. Under these conditions, a quadratic dependence of the rate coefficient for the reaction CH3 OH+OH on the water concentration was found. Thus the catalytic effect of water is not only important at low temperatures, but also at room temperature. The detailed mechanism responsible of the reaction acceleration is still unknown. However, this dependence should be included in the atmospheric global models since it is expected to be important in humid regions as in the tropics. Additionally, it could explain several differences regarding the global and local atmospheric concentration of methanol in tropical areas, for which many speculations about the sinks and sources of methanol have been reported.

17.
J Phys Chem A ; 119(51): 12730-5, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26637013

ABSTRACT

The gas phase structure and excited state dynamics of o-aminophenol-H2O complex have been investigated using REMPI, IR-UV hole-burning spectroscopy, and pump-probe experiments with picoseconds laser pulses. The IR-UV spectroscopy indicates that the isomer responsible for the excitation spectrum corresponds to an orientation of the OH bond away from the NH2 group. The water molecule acts as H-bond acceptor of the OH group of the chromophore. The complexation of o-aminophenol with one water molecule induced an enhancement in the excited state lifetime on the band origin. The variation of the excited state lifetime of the complex with the excess energy from 1.4 ± 0.1 ns for the 0-0 band to 0.24 ± 0.3 ns for the band at 0-0 + 120 cm(-1) is very similar to the variation observed in the phenol-NH3 system. This experimental result suggests that the excited state hydrogen transfer reaction is the dominant channel for the non radiative pathway. Indeed, excited state ab initio calculations demonstrate that H transfer leading to the formation of the H3O(•) radical within the complex is the main reactive pathway.

18.
J Chem Phys ; 143(16): 164304, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26520510

ABSTRACT

Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH-H2O and OH(D2O)n clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH-H2O and OH-D2O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D2O)2, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for "up-up" and "up-down" structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D2O molecules are observed shifted approximately 300 cm(-1) to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D2O)3.

19.
J Phys Chem A ; 119(29): 8125-32, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26135615

ABSTRACT

Substantial non-Arrhenius behavior has been previously observed in the low temperature reaction between the hydroxyl radical and methanol. This behavior can be rationalized assuming the stabilization of an association adduct in the entrance channel of the reaction, from which barrier penetration via quantum mechanical tunneling produces the CH3O radical and H2O. Helium nanodroplet isolation and a serial pick-up technique are used to stabilize the hydrogen bonded prereactive OH··CH3OH complex. Mass spectrometry and infrared spectroscopy are used to confirm its production and probe the OH stretch vibrations. Stark spectroscopy reveals the magnitude of the permanent electric dipole moment, which is compared to ab initio calculations that account for wide-amplitude motion in the complex. The vibrationally averaged structure has Cs symmetry with the OH moiety hydrogen bonded to the hydroxyl group of methanol. Nevertheless, the zero-point level of the complex exhibits a wave function significantly delocalized over a bending coordinate leading to the transition state of the CH3O producing reaction.

20.
Phys Chem Chem Phys ; 14(25): 8945-55, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22353849

ABSTRACT

The H-bonded network rearrangements in the S(0), S(1) and D(0) states of the neutral and cationic p-CreOH(H(2)O)(NH(3)) complexes were studied experimentally by means of (1 + 1)/(1 + 1') REMPI (Resonantly Enhanced MultiPhoton Ionization) and time resolved LIF (Laser Induced Fluorescence) spectroscopies combined with DFT (Density Functional Theory) calculations at the B3LYP/6-311G++(d,p) level. A comparison of the rearrangement process of the H-bonded network in the three states is given. Two cyclic H-bonded isomers were found on the S(0) potential energy surface and the results indicate that the rearrangement in this state is unlikely at the temperature of the supersonic expansion due to the presence of a high-energy barrier (7503 cm(-1)). On the other hand, the re-determination of the S(1) excited state lifetimes confirms that neither the H-bonded rearrangement nor the excited state hydrogen transfer (ESHT) reaction takes place in the S(1) state at the excitation energies of this work. Thus, it is concluded that the absorption of the second photon to reach the D(0) state takes place from the S(1) state of the cyclic-(OH-OH(2)-NH(3)) isomer. A preferential evaporation of H(2)O upon vertical ionization of the cyclic-(OH-OH(2)-NH(3)) isomer is observed which is consistent with a statistical redistribution of the internal energy. Nevertheless, our theoretical calculations suggest that initial excitation of the H-bonded network rearrangement modes may also play a role to leave the H(2)O molecule as a terminal moiety in a chain-(OH-NH(3)-OH(2))(+) isomer. The reaction pathway for the solvent rearrangement involves a double proton transfer process with a very low energy barrier (575 cm(-1)) that is overcome at the vertical ionization energy of the complex.


Subject(s)
Ammonia/chemistry , Cresols/chemistry , Cations/chemistry , Hydrogen Bonding , Isomerism , Models, Molecular , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...