Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 232(4): 1618-1631, 2021 11.
Article in English | MEDLINE | ID: mdl-34270792

ABSTRACT

More frequent droughts and rising temperatures pose serious threats to tropical forests. When stomata are closed under dry and hot conditions, plants lose water through leaf cuticles, but little is known about cuticle conductance (gmin ) of tropical trees, how it varies among species and environments, and how it is affected by temperature. We determined gmin in relation to temperature for 24 tropical tree species across a steep rainfall gradient in Panama, by recording leaf drying curves at different temperatures in the laboratory. In contrast with our hypotheses, gmin did not differ systematically across the rainfall gradient; species differences did not reflect phylogenetic patterns; and in most species gmin did not significantly increase between 25 and 50°C. gmin was higher in deciduous than in evergreen species, in species with leaf trichomes than in species without, in sun leaves than in shade leaves, and tended to decrease with increasing leaf mass per area across species. There was no relationship between stomatal and cuticle conductance. Large species differences in gmin and its temperature response suggest that more frequent hot droughts may lead to differential survival among tropical tree species, regardless of species' position on the rainfall gradient.


Subject(s)
Plant Leaves , Tropical Climate , Droughts , Forests , Phylogeny , Temperature , Water
2.
Tree Physiol ; 40(5): 637-651, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32083285

ABSTRACT

Photosynthetic carbon uptake by tropical forests is of critical importance in regulating the earth's climate, but rising temperatures threaten this stabilizing influence of tropical forests. Most research on how temperature affects photosynthesis focuses on fully sun-exposed leaves, and little is known about shade leaves, even though shade leaves greatly outnumber sun leaves in lowland tropical forests. We measured temperature responses of light-saturated photosynthesis, stomatal conductance, and the biochemical parameters VCMax (maximum rate of RuBP carboxylation) and JMax (maximum rate of RuBP regeneration, or electron transport) on sun and shade leaves of mature tropical trees of three species in Panama. As expected, biochemical capacities and stomatal conductance were much lower in shade than in sun leaves, leading to lower net photosynthesis rates. However, the key temperature response traits of these parameters-the optimum temperature (TOpt) and the activation energy-did not differ systematically between sun and shade leaves. Consistency in the JMax to VCMax ratio further suggested that shade leaves are not acclimated to lower temperatures. For both sun and shade leaves, stomatal conductance had the lowest temperature optimum (~25 °C), followed by net photosynthesis (~30 °C), JMax (~34 °C) and VCMax (~38 °C). Stomatal conductance of sun leaves decreased more strongly with increasing vapor pressure deficit than that of shade leaves. Consistent with this, modeled stomatal limitation of photosynthesis increased with increasing temperature in sun but not shade leaves. Collectively, these results suggest that modeling photosynthetic carbon uptake in multi-layered canopies does not require independent parameterization of the temperature responses of the biochemical controls over photosynthesis of sun and shade leaves. Nonetheless, to improve the representation of the shade fraction of carbon uptake dynamics in tropical forests, better understanding of stomatal sensitivity of shade leaves to temperature and vapor pressure deficit will be required.


Subject(s)
Photosynthesis , Trees , Carbon Dioxide , Panama , Plant Leaves , Temperature
3.
Photosynth Res ; 141(1): 119-130, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30054784

ABSTRACT

Previous studies of heat tolerance of tropical trees have focused on canopy leaves exposed to full sunlight and high temperatures. However, in lowland tropical forests with leaf area indices of 5-6, the vast majority of leaves experience varying degrees of shade and a reduced heat load compared to sun leaves. Here we tested whether heat tolerance is lower in shade than in sun leaves. For three tropical tree species, Calophyllum inophyllum, Inga spectabilis, and Ormosia macrocalyx, disks of fully developed shade and sun leaves were subjected to 15-min heat treatments, followed by measurement of chlorophyll a fluorescence after 48 h of recovery. In two of the three species, the temperature causing a 50% decrease of the fluorescence ratio Fv/Fm (T50) was significantly lower (by ~ 1.0 °C) in shade than in sun leaves, indicating a moderately decreased heat tolerance of shade leaves. In shade leaves of these two species, the rise in initial fluorescence, F0, also occurred at lower temperatures. In the third species, there was no shade-sun difference in T50. In situ measurements of photosynthetic CO2 assimilation showed that the optimum temperature for photosynthesis tended to be lower in shade leaves, although differences were not significant. At supra-optimal temperatures, photosynthesis was largely constrained by stomatal conductance, and the high-temperature CO2 compensation point, TMax, occurred at considerably lower temperatures than T50. Our study demonstrates that the temperature response of shade leaves of tropical trees differs only marginally from that of sun leaves, both in terms of heat tolerance and photosynthetic performance.


Subject(s)
Adaptation, Physiological , Hot Temperature , Photosynthesis , Plant Leaves/physiology , Sunlight , Trees/physiology , Tropical Climate , Adaptation, Physiological/radiation effects , Carbon Dioxide/metabolism , Chlorophyll A/metabolism , Fluorescence , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Plant Stomata/physiology , Plant Stomata/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...