Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 68: 131-141, 2021 11.
Article in English | MEDLINE | ID: mdl-34601120

ABSTRACT

Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.


Subject(s)
Lactic Acid , Synechocystis , Clustered Regularly Interspaced Short Palindromic Repeats , Synechocystis/genetics
2.
Physiol Plant ; 166(1): 413-427, 2019 May.
Article in English | MEDLINE | ID: mdl-30829400

ABSTRACT

A sustainable society will have to largely refrain from the use of fossil carbon deposits. In such a regime, renewable electricity can be harvested as a primary source of energy. However, as for the synthesis of carbon-based materials from bulk chemicals, an alternative is required. A sustainable approach towards this is the synthesis of commodity chemicals from CO2 , water and sunlight. Multiple paths to achieve this have been designed and tested in the domains of chemistry and biology. In the latter, the use of both chemotrophic and phototrophic organisms has been advocated. 'Direct conversion' of CO2 and H2 O, catalyzed by an oxyphototroph, has excellent prospects to become the most economically competitive of these transformations, because of the relative ease of scale-up of this process. Significantly, for a wide range of energy and commodity products, a proof of principle via engineering of the corresponding production organism has been provided. In the optimization of a cyanobacterial production organism, a wide range of aspects has to be addressed. Of these, here we will put our focus on: (1) optimizing the (carbon) flux to the desired product; (2) increasing the genetic stability of the producing organism and (3) maximizing its energy conversion efficiency. Significant advances have been made on all these three aspects during the past 2 years and these will be discussed: (1) increasing the carbon partitioning to >50%; (2) aligning product formation with the growth of the cells and (3) expanding the photosynthetically active radiation region for oxygenic photosynthesis.


Subject(s)
Cyanobacteria/metabolism , Oxygen/metabolism , Photosynthesis/physiology , Carbon Dioxide/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...