Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacognosy Res ; 9(2): 133-137, 2017.
Article in English | MEDLINE | ID: mdl-28539736

ABSTRACT

BACKGROUND: Sphaeralcea angustifolia (Malvaceae) is extensively used in Mexican traditional medicine for the treatment of gastrointestinal disorders such as diarrhea and dysentery. OBJECTIVE: The current study was to validate the traditional use of S. angustifolia for the treatment of diarrhea and dysentery on biological grounds using in vitro antiprotozoal activity and computational experiments. MATERIALS AND METHODS: The ethanol extract, subsequent fractions, flavonoids, phenolic acids, and a sterol were evaluated on Entamoeba histolytica and Giardia lamblia trophozoites. Moreover, molecular docking studies on tiliroside were performed; it was tested for its affinity against pyruvate:ferredoxin oxidoreductase (PFOR) and fructose-1,6-bisphosphate aldolase (G/FBPA), two glycolytic enzymes of anaerobic protozoa. RESULTS: Bioassay-guided fractionation of extract of the aerial parts of S. angustifolia gives tiliroside and apigenin, caffeic acid, protocatechuic acid, and ß-sitosterol. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiprotozoal compound on both protozoa with 50% inhibitory concentration values of 17.5 µg/mL for E. histolytica and 17.4 µg/mL for G. lamblia. Molecular docking studies using tiliroside showed its probable antiprotozoal mechanism with PFOR and G/FBPA. In both cases, tiliroside showed high affinity and inhibition constant theoretic for PFOR (lowest free binding energy from -9.92 kcal/mol and 53.57 µM, respectively) and G/FBPA (free binding energy from -7.17 kcal/mol and 55.5 µM, respectively), like to metronidazole, revealing its potential binding mode at molecular level. CONCLUSION: The results suggest that tiliroside seems to be a potential antiprotozoal compound responsible for antiamoebic and antigiardial activities of S. angustifolia. Its in vitro antiprotozoal activities are in good agreement with the traditional medicinal use of S. angustifolia in gastrointestinal disorders such as diarrhea and dysentery. SUMMARY: Bioassay-guided fractionation of extract of the aerial parts of S. angustifolia gives: tiliroside and apigenin, caffeic acid, protocatechuic acid) and ß-sitosterol. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiprotozoal compound on both protozoa with IC50 values of 17.5 mg/mL for E. histolytica and 17.4 µg/mL for G. lamblia. Molecular docking studies using tiliroside showed its probable antiprotozoal mechanism with PFOR and G/FBPA. In both cases tiliroside showed high affinity and inhibition constant theoretic for PFOR (lowest free binding energy from -9.92 kcal/mol and 53.57 mM, respectively) and G/FBPA (free binding energy from -7.17 kcal/mol, respectively and 55.5 µM), like to metronidazole, revealing its potential binding mode at molecular level. The results suggest that tiliroside seems to be a potential antiprotozoal compound responsible for antiamoebic and antigiardial activities of Sphaeralcea angustifolia. Abbreviations Used: PFOR: Pyruvate:ferredoxin oxidoreductase; G/FBPA: Fructose 1,6 bisphosphate aldolase.

2.
Cancer Genet Cytogenet ; 170(2): 147-51, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17011986

ABSTRACT

Breast cancer is the second-leading cause of death among Mexican women >35 years of age. At the molecular level, changes in many genetic pathways have been reported to be associated with this neoplasm. To analyze these changes, we determined gene expression profiles and chromosomal structural alterations in tumors from Mexican women. We obtained mRNA to identify expression profiles with microarray technology, and DNA to determine amplifications and deletions, in 10 fresh sporadic breast tumor biopsies without treatment, as well as in 10 nonaffected breast tissues. Expression profiles were compared with genetic changes observed by comparative genomic hybridization (CGH). We compared the expression profiles against the structural alterations from the studied genes by means of microarrays; at least 17 of these genes correlated with DNA copy number alterations. We found that the following genes were overexpressed: LAMC1, PCTK3, CCNC, CCND1, FGF3, PCTK2, L1CAM, BGN, and PLXNB3 (alias PLEXR). Underexpressed genes included CASP9, FGR, TP73, HSPG2, and ERCC1; genes turned off included FRAP1, EPHA2 (previously ECK), IL12A, E2F5, TNFRSF10B, TNFRSF10A, EFNB3, and BCL2. The results will allow us, in the near future, to outline genes that could serve as diagnostic, prognostic, or target therapy markers for the Mexican population.


Subject(s)
Breast Neoplasms/genetics , Chromosome Aberrations , Adult , Aged , Female , Gene Expression Profiling , Humans , Mexico , Middle Aged , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...